HABILITATION A DIRIGER LES RECHERCHES

UNIVERSITE PIERRE ET MARIE CURIE

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

ASSISTING USERS OF
PROOF ASSISTANTS

DAVID DELAHAYE

DEFENDED ON DECEMBER 9, 2010

— JURY -
MARC POUZET PRESIDENT
GILLES DOWEK REVIEWER
HERMAN GEUVERS REVIEWER
JULIO RUBIO REVIEWER
CATHERINE DUBOIS SUPERVISOR
THERESE HARDIN EXAMINER

MARIE-LAURE POTET EXAMINER

ACKNOWLEDGMENTS

First of all, I would like to thank Marc Pouzet for accepting to be the president of
my jury. In the same way, I am very grateful to Gilles Dowek, Herman Geuvers, and
Julio Rubio for being the reviewers of this document. Their several comments have
been of great help when preparing the final version of this document. I also wish to
express all my gratitude to Catherine Dubois, Thérése Hardin, and Marie-Laure Potet
for acting as examiners of my jury.

A very special thank goes to Catherine Dubois. More than my supervisor, she is
especially the person who succeeded in focusing my energy on consistent objectives,
and therefore making me express the best of myself. Without her help, I could not
present half of the work described in this document. Another special thank goes to
Véronique Viguié Donzeau-Gouge, Thérése Hardin, and Renaud Rioboo. They have
never hesitated to put their trust in me, and provided me with an invaluable help
during all these years.

In these acknowledgments, it is difficult to forget to mention the CPR and Focalize
teams, as well as the CEDRIC laboratory. If human relations are probably the most
difficult link to manage, I have to consider myself quite lucky for finding a so pleasant
environment, where an exceptionally good atmosphere prevails at all times.

Last but not least, and even if no word is strong enough to express my gratefulness
to them, many thanks to all my family, who has been of constant support.

iii

ABSTRACT

This document proposes to present the results of more than ten years of research
by the author, which aim to improve several techniques related to theorem proving.
These improvements are guided by the following leitmotiv: how to make theorem
proving easier to use? This work starts from the self-evident fact that theorem proving
represents actually a very thin part of the spectrum of formal methods, especially
compared to model checking. Automation is probably one of the main causes, but
some other reasons may also be found elsewhere, such as in the way of building
specifications or interacting with theorem provers. Thus, this document is organized
around these three topics, that are structuring, automating, and communicating.

The first part of this document focuses on the specification languages involved in
theorem provers. In particular, we make use of the Focal language, which allows
us to build certified applications. To understand how the design features of Focal
can be appropriate in practice, a significant application, realized in the framework of
the EDEMOI project, is described, and which consists of the formalization of airport
security regulations in the domain of civil aviation. In the idea of clearly identifying
specifications and implementations, we present, in the context of the Coq proof
assistant, another work which aims to execute inductive relations. Finally, we discuss
the notion of reuse with an experiment, which consists in retrieving information,
typically theorems, in a proof library using types as keys and up to isomorphisms.

The second part of this document is devoted to automation in theorem proving.
First, the problem is handled in terms of power of automation, introducing a proof
dedicated meta-language, which is intended to tailor automation in the framework of
Coq. Next, we describe several experiments which aim to import computations from
computer algebra systems into proof assistants in a pure skeptical way (i.e. verifying
the soundness of the computations). Among these experiments, some interfaces have
been realized between Coq and Maple, as well as between Focal and Axiom. Lastly, in
the same idea of skeptical computations, we propose to adapt this idea to automated
deduction with two contributions related to the Zenon automated theorem prover.
These contributions respectively consist in verifying the proofs produced by Zenon by
generating Coq proofs, and validating supplementary rules involved in applications
developed using the B method by means of Zenon proofs.

In the third part of this document, we aim to draw attention to several means
of communicating with theorem provers. Regarding the input language and in the
framework of Coq, we propose a language designed to describe proofs and intended to
be style-independent. Concerning the output language, we present a transformation
from Focal specifications to UML models, which is an appropriate means of producing
comprehensible documents for end-users, such as the certification authorities in the
context of the EDEMOI project. Finally, still considering output languages, we introduce
a scheme of compilation for Focal, which is based on the notion of modules and allows
us to get traceability between Focal specifications and compiled codes.

CONTENTS

INTRODUCTION 1

1.1 Formal Methods 1

1.2 Theorem Proving 1

1.3 Improving Theorem Proving 2
1.4 Outline of the Document 3
STRUCTURING 5

2.1 Certification of Airport Security Regulations
2.1.1 The EDEMOI Project 6

2.1.2 Results and Analyses 7
2.1.3 Appropriateness of Focal 9
2.2 Code Generation from Specifications 10
2.2.1 Functional Extraction in Coq 10
2.2.2 Mode Consistency Analysis 11
2.2.3 Code Generation 13
2.2.4 Extension to Focalize 14
AUTOMATING 17

3.1 Deduction and Computer Algebra 18
3.1.1 A Maple Mode for Coq 18
3.1.2 Proofs over Algebraically Closed Fields
3.1.3 Tests over Real Closed Fields 24

3.2 Certification of Automated Proofs 30
3.2.1 Validation of Zenon Proofs 30
3.2.2 Validation of B Proofs from Zenon 33
COMMUNICATING 37
4.1 From Focal Specifications to UML Models 38
4.1.1 The Need for Documentation 38
4.1.2 Profile and Transformation Rules 39

4.1.3 Airport Security Regulations 41

4.2 A Module-Based Model for Focal 43
4.2.1 High-Level Compilation Schemes 43
4.2.2 Module-Based Compilation 44

CONCLUSION 49
5.1 Achievements 49
5.2 Perspectives 50

THE FOCAL ENVIRONMENT 55
A.1 What is Focal? 55
A.2 Specification: Species 56

22

A.3 Implementation: Collection 57

A.4 Certification: Proving with Zenon 57
A.5 Further Information 58
B FORMER CONTRIBUTIONS 59

B.1 Information Retrieval in Proof Libraries 59
B.1.1 Use of Type Isomorphisms 60
B.1.2 Application to Proof Libraries 61

B.2 A Proof Dedicated Meta-Language 63
B.2.1 Evolution of Meta-Languages 63

B.2.2 The L. Meta-Language 64

B.2.3 Future of Meta-Languages 65
B.3 Free-Style Theorem Proving 67

B.3.1 The Several Proof Styles 67

B.3.2 The L, Proof Language 68

B.3.3 The Next Proof Languages 69

C STUDENT SUPERVISION 71
c.1 PhD Students 71
c.1.1 Jean-Frédéric Etienne (2004-2008) 71
c.1.2 Pierre-Nicolas Tollitte (2009-now) 71
c.1.3 Mélanie Jacquel (2010-now) 71
c.2 Master and Engineering Students 72
c.2.1 Yuan Gang (2003) 72
c.2.2 Nicolas Bertaux (2008) 72
c.2.3 Pierre-Nicolas Tollitte (2009) 72
c.2.4 Sanaa Toumi (2009) 73
c.2.5 Benjamin Laliére (2009) 73
D PUBLICATION ADDENDUM 75
pD.1 Paper 1: Airport Security Regulations in Focal 75
D.2 Paper 2: Executing Inductive Relations 92

D.3 Paper 3: A Maple Mode for Coq 109
D.4 Paper 4: The Zenon Automated Theorem Prover 137
D.5 Paper 5: From Focal to UML 153

Bibliography 163

"How thoroughly it is ingrained in mathematical science that every real
advance goes hand in hand with the invention of sharper tools and simpler
methods which, at the same time, assist in understanding earlier theories
and in casting aside some more complicated developments."

David Hilbert (1862 - 1943).

INTRODUCTION

1.1 FORMAL METHODS

In computer science, formal methods are mathematically-based techniques used for
the specification, development and verification of software and hardware systems.
The use of formal methods is mainly motivated by the notions of safety or security
which must be ensured in the design of some critical systems, typically embedded
systems for example. Generally, formal methods are considered to require a high
cost of development, so that they are rather used in systems where "critical" means
that human life is at stake. Thus, formal methods are quite popular in avionics and
aerospace systems, and also in the domain of health, with applications such as heart
monitors.

Regarding verification, formal methods offer a wide panel of possibilities which
correspond to different techniques. These possibilities can be roughly seen as being
part of two approaches. The first one is model checking, which consists of a systemat-
ically exhaustive exploration of the mathematical model (finite or infinite). Usually,
this consists in exploring all states and transitions in the model, by using smart and
domain-specific abstraction techniques to consider whole groups of states in a single
operation and reduce computing time. Model checking is, by definition, automatic
and is therefore of great benefit to engineering industry where it is desirable that
human assistance may be avoided. However, model checking is not always effective
as the combinatorial explosion may be significant and the abstraction techniques not
enough efficient to sufficiently decrease the size of the corresponding model. Another
approach to formal verification is theorem proving, which we propose to focus on in
this document.

1.2 THEOREM PROVING

Theorem proving aims to ensure properties using logical deduction. There exist many
systems using theorem proving and which can be distinguished according to different
characteristics. Some of them use first order logic, like the B method [1] or ACL2 [123],
some others use higher order logic, like Coq [129] or HOL [135]. Some systems are
based on classical logic, like PVS [146] or HOL, some others are based on intuitionistic
logic (consequently benefiting from the Curry-Howard capability), like ALF [124]
or NuPRL [141]. These systems can also be distinguished according their use of set
theory, like the B method or Mizar [140], or their use of type theory, like Coq or PVS.

INTRODUCTION

Some systems are interactive, like LEGO [137] or HOL, some others are automated like
Vampire [154] or Gandalf [121]. Finally, some systems cannot be characterized according
to the previous features, since they are logical frameworks (which can be instantiated
with different logics), like Isabelle [136] or LF [151].

Compared to model checking, theorem proving has the advantage to produce not
only a statement of validity but also an evidence of this validity. Admittedly, model
checkers behave more like oracles, producing results which must be verified by other
means. Nevertheless, theorem proving suffers a lack of automation, which is generally
only partial and requires the user to get a sufficient understanding of the system to
validate manually the uncompleted proofs. Depending on the system, this last point
may expect a high level of expertise. Thus, automation is probably one of the most
crucial problems of theorem proving and we can easily understand why it is a very
active research topic, in particular in the domains of first order logic, induction and
rewriting. But theorem proving can also be improved at some other levels (higher or
lower in the development process), such as the structure of specifications (which may
influence the way of building proofs) or the way of communicating with the prover
(either to specify or prove properties, or to produce documentation for completed
specifications).

1.3 IMPROVING THEOREM PROVING

This document proposes to present the results of more than ten years of research by
the author (including his Master/PhD theses started in 1997), which aim to improve
several techniques related to theorem proving. These improvements are guided by
the following leitmotiv: how to make theorem proving easier to use? This work starts
from the self-evident fact that theorem proving represents actually a very thin part
of the spectrum of formal methods, especially compared to model checking. As said
previously, automation is probably one of the main causes, but some other reasons may
also be found elsewhere, such as in the way of building specifications or interacting
with theorem provers. Thus, this document is organized around these three topics, that
are structuring (Chapter 2), automating (Chapter 3), and communicating (Chapter 4).

The idea behind these three topics into which we propose to go further is to
draw what we believe an ideal theorem prover could look like. Basically, such a
theorem prover should provide a language allowing us to write highly structured
specifications, as well as appropriate means to combine them. In addition, such
high-level specifications are nothing without a suitable automation, which should
offer not only a significant set of automated deduction procedures, but also dedicated
languages, tools or interfaces to enhance this automation. Finally, the theorem prover
and end-users should be able to smoothly communicate in a transparent way and
in both directions, i.e. when providing specifications and proofs to the theorem
prover, and when trying to understand and interpret already formalized and compiled
specifications. This document tries to humbly bring some elements of answer in this
task consisting in asymptotically building this ideal theorem prover.

1.4 OUTLINE OF THE DOCUMENT

1.4 OUTLINE OF THE DOCUMENT

The first part of this document focuses on the specification languages involved in
theorem provers (see Chapter 2). In particular, we aim to show how the way of
specifying is essential to facilitate the way of proving. To do so, we make use of
the Focal language [13, 132], which allows us to build certified applications. In this
language, there is a neat separation between specifications (which may be quite
abstract) and implementations (which are concrete). Between specifications and
implementations, there exists a notion of refinement, which is actually inheritance
coming from the object-oriented programming paradigm. To understand how the
design features of Focal can be appropriate in practice, a significant application,
realized in the framework of the EDEMOI project [131], is described, and which
consists of the formalization of airport security regulations in the domain of civil
aviation. In the same idea of clearly identifying specifications and implementations,
we present, in the context of the Coq proof assistant [129], a work which aims to
execute inductive relations. In fact, inductive relations are more than specifications
and also contain implementations, which can be extracted to be executed. Finally,
along the same line of providing reusability as offered by the inheritance feature of
Focal, we discuss the notion of reuse at another level, which is to retrieve information,
typically theorems, in a proof library using types as keys and up to isomorphisms.
This work deals with specific features of some type theories, such as polymorphism,
dependent types or strong sum types, and has been implemented in an earlier version
of Coq.

The second part of this document is devoted to automation in theorem proving
(see Chapter 3). First, the problem is handled in terms of power of automation,
introducing a proof dedicated meta-language, called L., which is intended to tailor
automation in the framework of Coq. This language appears quite appropriate for
small and local automation, but also for significant tactics, such as the fully reflexive
tactic “field”, which aims to prove equalities over fields. Next and as a result of
this work, we discuss the notion of computation, which may be quite inefficient
when performed in an autarkic way (i.e. within the theorem prover). Therefore, we
propose a method to externalize some computations using more suitable tools, such
as computer algebra systems, in a pure skeptical way (i.e. verifying the soundness of
the computations). An experiment has been conducted between Coq and Maple [138]
for computations over fields, while the corresponding computations were verified by
the tactic “field”. This experiment, called the Maple mode for Coq, has been extended
to deal with gcd computations over polynomials and has allowed us to implement a
quantifier elimination procedure for algebraically closed fields. In the continuity of
this procedure and still in the idea of benefiting from external computations as oracles,
another procedure has been designed in the context of the Focal environment to test
the validity of properties over real closed fields using the computation of cylindrical
algebraic decomposition performed by a routine of Axiom [125]. Lastly, in the same
idea of skeptical computations, we propose to adapt this idea to automated deduction
with two contributions related to the Zenon automated theorem prover [24], which is
used by Focal in particular. The first contribution deals with the proofs produced by
Zenon, and which are translated into Coq proofs for checking. The second contribution

INTRODUCTION

consists in validating supplementary rules involved in applications developed using
the B method [1] by means of Zenon proofs, which are translated back to B proofs.

In the third part of this document, we aim to draw attention to several means of
communicating with theorem provers (see Chapter 4). Regarding the input language
and in the framework of Coq, we propose a language, designed to describe proofs
and called L. This language has the advantage to be style-independent in the sense
that it gathers the three well-identified proof styles, i.e. the procedural, declarative
and proof-term styles. Concerning the output language, we present a transformation
from Focal specifications to UML models [144], which has been formally described
and proved sound. This transformation appears quite appropriate as a means of
automatic documentation and especially as a means of producing comprehensible
documents for end-users. In particular, in the context of the EDEMOI project, we can
hopefully expect that documents in UML are a good basis to converse with certification
authorities. Finally, still considering output languages, we introduce another scheme
of compilation for Focal, which is based on the notion of modules. The Focal compiler
is able to produce not only OCaml code [128] for execution, but also Coq code for
certification. As both OCaml and Coq offer the notion of modules, this scheme of
compilation is quite possible and arises as a higher level alternative to the flat current
scheme using records. In particular, this compilation allows us to get traceability
between Focal specifications and compiled codes.

The last part of this document is the conclusion, which will provide not only a
summary of the different contributions described previously, but also several sets of
perspectives. Some perspectives in the short and medium terms will have been already
presented in the parts introduced above, and the conclusion will propose long term
and more ambitious perspectives.

It should be noted that Appendix D provides 5 publications in their entirety, and
which intend to support the three previous chapters described above. More precisely,
papers of Section D.1 and D.2 are related to Chapter 2, papers of Section D.3 and D.4
to Chapter 3, and finally paper of Section D.5 to Chapter 4.

STRUCTURING

"There are two ways of constructing a software design; one way is to make
it so simple that there are obviously no deficiencies, and the other way is
to make it so complicated that there are no obvious deficiencies. The first
method is far more difficult."

Charles Antony Richard Hoare
(aka Tony Hoare).

This chapter aims to focus on the importance of structuring specifications through
three distinct and well identified contributions by the author. The first one is related
to the Focal environment [13, 132], which allows us to build certified applications by
means of a language clearly distinguishing specifications from implementations, and
in an incremental way through the use of inheritance coming from the object-oriented
programming paradigm and which provides an appropriate notion of refinement. The
reader can refer to Appendix A for an overview of Focal. As exposed in this overview
of Focal, Focal was initially designed in the idea of developing effective mathematics
with a structuring framework appropriate for this kind of applications and in particu-
lar for the several involved notions (i.e. sets, algebraic structures, etc). To show how
the design features offered by Focal can be also suitable in other contexts, we present
the development of a significant application, which consists of the formalization of
airport security regulations in the domain of civil aviation and which has been realized
in the framework of the EDEMOI project [131]. The second contribution is actually set
in a similar context where specifications are intended to be separated from implemen-
tations, and aims to generate purely functional code from inductive relations. This
work initially experimented in the Coq proof assistant [129] is currently being adapted
to the Focalize environment [133] (successor of Focal). Finally, the last contribution
resides in providing another notion of reuse than the one induced by the inheritance
mechanism of Focal, and which consists in retrieving information, basically theorem:s,
in proof libraries using types as keys and up to isomorphisms. In particular, a search
procedure has been developed in a calculus including polymorphism, dependent types
and strong sum types, and has been implemented in an earlier version of Coq. Due to
lack of space and as this last contribution is actually more former than the two first
ones, it is described in Section B.1 of Appendix B with some perspectives relying on
some current trends.

STRUCTURING

2.1 CERTIFICATION OF AIRPORT SECURITY REGULATIONS

Contribution in collaboration with V. Viguié Donzeau-Gouge
and J.-F. Etienne (PhD student; see Subsec.C.1.1 of Appx. C).
CPR team, CEDRIC (CNAM), Paris (France), 2004-2008.
Published in [54, 55, 56, 60, 58] (see Sec. D.1 of Appx. D).

This first contribution is focused on the Focal environment and aims to provide
some elements which tend to show that Focal is an appropriate tool for real-world
applications. In particular, we present the results of a 4 year study, which consisted
in certifying airport security regulations using Focal and which was conducted in the
framework of the EDEMOI project.

2.1.1 The EDEMOI Project

The security of civil aviation is governed by a series of international standards and
recommended practices that detail the responsibilities of the various stake-holders
(states, operators, agents, etc). These documents are intended to give the specifications
of procedures and artifacts which implement security in airports, aircraft and air traffic
control. A key element to enforce security is the conformance of these procedures and
artifacts to the specifications. However, it is also essential to ensure the correctness,
completeness and consistency of the specifications. Standards and recommended
practices are usually written in natural language in order to be easily understood and
adopted by a large number of stake-holders. Nevertheless, the normative documents
are generally of voluminous size, ambiguous and often open to interpretation. More-
over, it is very difficult to automatically process natural language documents in search
for inconsistencies. All these problems highlight the lack of a formal drafting process
and this is where modeling techniques can help. Recent work [90, 2] has shown that
there is an increased interest in providing automated and systematic support to reason
about regulations due to the growing complexity of safety and security requirements.

In this section, we report on an experience which consists in building and analyzing
the formal models of two standards related to airport security: the first one is the inter-
national standard Annex 17, produced by the International Civil Aviation Organization
(ICAO), an agency of the United Nations; the second one is the European Directive
Doc 2320, produced by the European Civil Aviation Conference (ECAC) and which is
supposed to refine the Annex 17 at the European level. This formalization was realized
using the Focal environment [13, 132] (see Appendix A), and within the framework of
the EDEMOI project’ [131]. The EDEMOI project aims to integrate and apply several
requirements engineering and formal methods techniques to analyze regulations in
the domain of airport security. The methodology of this project may be considered
as original in the sense that it tries to apply techniques, usually reserved to critical
software, to the domain of regulations (in which no implementation is expected). The
project used a two-step approach. In the first step, standards described in natural
language were analyzed in order to extract security properties and to elaborate a

The EDEMOI project was supported by the French National “Action Concertée Incitative Sécurité
Informatique”.

2.1 CERTIFICATION OF AIRPORT SECURITY REGULATIONS

conceptual model of the underlying system [93]. The second step, which this work is
part of, consisted in building formal models and to analyze/verify these models by
different kinds of formal tools.

In this project, we had several motivations. First, from the formalization of the
two standards (previously mentioned), it was expected to improve the quality of the
normative documents and hence to increase the efficiency of the conformity assessment
procedure. Second, thanks to this significant formalization, another motivation was to
validate the design features as well as the reasoning support offered by Focal, and to
extend this environment if required by the needs of the considered modeling.

2.1.2 Results and Analyses

Our approach consists of three steps: first, a preliminary analysis is performed on the
airport security regulations considered in this project; second, the formal models of
the two standards seen previously are designed using the Focal environment; third, the
obtained formal models are validated using the reasoning support of Focal. Actually,
there is also a fourth step, which aims to propose an extension of Focal to produce
UML models for documentation; this step is described in Section 4.1 of Chapter 4.

The preliminary analysis [54, 55, 66, 60, 58] is realized by applying a variant of the
KAOS goal-oriented requirements engineering methodology [40]. In fact, unlike the
original elaboration method, our aim is not to derive the requirements of an envisioned
system, starting from the identification of the high-level goals to be achieved to the
operations, objects and constraints to be implemented. In our case, the requirements
already exist in the form of standards and recommendations that each airport facility
has to comply to. Instead, the WHY and HOW elaboration tactics of the KAOS
goal-oriented approach are used to put under scrutiny the process by which the
airport security properties have been derived. Basically, this consists in identifying
the fundamental security properties and to determine how they are decomposed into
sub-properties with respect to the terminologies and concepts used in the normative
documents. Similarly, a bottom-up approach (by asking WHY questions) is also
considered to clearly identify the intention of each specific security property. In so
doing, this allows us to unveil any implicit hypotheses that led to the formulation of
the preventive security properties. The hierarchy of properties thus obtained can be
used to provide an appropriate structuring framework to facilitate the traceability with
the normative documents; it should be noted that the well-organized content of the
standards has largely facilitated the elaboration of the hierarchy of goals, whereby the
decomposition obtained almost reflects the structuring of the documents. In addition,
through this framework, it would be possible to identify the impact of a particular
security property over the entire regulatory system, to analyze the effects of changes
on the regulations, and to verify the effectiveness of the regulations against specific
attack scenarios. As mentioned previously, Doc 2320 is supposed to clarify and refine
the security measures outlined in Annex 17 at the European level. This refinement is
concretized by ensuring that each security property extracted from Doc 2320 is not
less restrictive than or does not invalidate those obtained from Annex 17.

STRUCTURING

Once the preliminary analysis performed, the Annex 17 and Doc 2320 standards
were formalized [54, 55, 66, 60, 58] using the Focal environment. This formalization
consists of a general model structure obtained for Annex 17, starting from the elabora-
tion of the domain environment to the formalization of the security properties. The
Doc 2320 specification is then obtained by extending the Annex 17 model for each
correspondence between the two standards. The task of modeling the Annex 17 and
Doc 2320 security properties has required a significant effort. In fact, it mainly corre-
sponds to a knowledge engineering task, whereby the domain knowledge described
in the normative documents is transformed into an appropriate Focal representation.
In particular, we shown that for the sake of ensuring a certain traceability with the
original documents, a proper classification has to be determined for the subjects being
regulated. This classification also has for purpose to properly formalize the security
properties common to certain categories of subjects. Furthermore, we pointed out
that the provision of an appropriate framework to reason about the regulations also
required the specification of additional domain relevant constraints. These are used
to clearly delimit the application context of each security property, thus eliminating
any unrealistic scenarios. More importantly, various ambiguities and imprecisions
were also clarified during the formalization of the identified security properties. Such
inferred information tend to improve the quality of the standards by eliminating as
far as possible any imprecision residing in the informal definitions of the security
properties considered.

Different analyses were carried out on the formal models produced in order to
validate the regulations considered [56, 66, 60, 58]. Basically, this consists in establish-
ing the correctness and completeness of these regulations, and one way of doing so
is to prove the derivability of each decomposition of security property established
during the analysis phase. By correctness, we mean that the specific security properties
may imply the fundamental ones. By completeness, we mean that all the specific
security properties are necessary to satisfy the fundamental ones, i.e. a fundamental
security property is no longer satisfied when one of its sub-properties is omitted.
The correctness theorems proved during the validation step have served to clarify
any remaining imprecision in the formal models. In particular, by systematically
exploring the decomposition obtained for each of the different categories of prevention
considered, we managed to identify a set of hidden assumptions (or omissions) that
shed light on the intention of each specific security property within the entire regula-
tion. These hidden assumptions must not be considered as failures of the regulation,
but more as implicit security requirements. Thus, the validation addresses a certain
form of completeness for the regulation, where every security requirement has been
made explicit. It should also be noted that these hidden assumptions were identified
in a pragmatic approach, i.e. by exploiting the information gathered from failed
proof attempts while referring to the general context of the regulation. Regarding
the validation of Doc 2320, refinement theorems allowed us to formally establish that
Doc 2320 indeed refines Annex 17 at the European level. In particular, we shown
that each new security property identified at the Doc 2320 level does not invalidate
any of the Annex 17 properties and either induces hidden assumptions that are more
restrictive than those identified at the Annex 17 level or sustains a specific security
objective through a scope extension (when new categories of subjects/preventions are

2.1 CERTIFICATION OF AIRPORT SECURITY REGULATIONS

identified). Moreover, under the assumption that any omitted Annex 17 property still
prevails, we also provided evidence that each existing security property is either made
more precise and restrictive or is preserved as is within the new application context.

The formal models produced in Focal correspond to a complete formalization of
Annex 17 and Doc 2320. They consist of about 10,000 lines of code with in particular
150 species and 200 proofs. It took about 2 years to be finalized, with at least 11
attempting versions in between. This formalization is described in particular in [54],
which can be found in Section D.1 of Appendix D.

2.1.3 Appropriateness of Focal

Regarding the Focal specification language, this experiment revealed that it appears
to be well-suited for such type of application, even if it was initially designed for
the development of certified computer algebra libraries. In essence, the inheritance
(refinement) and parameterization (modularity) features of the language allowed us
to provide an appropriate structure for the formal models that facilitates traceability
with the normative documents, while providing a neat separation between the domain
relevant knowledge and the formalized security properties. More precisely, with
inheritance we were able to naturally represent the classification determined for the
subjects being regulated. Moreover, by using inheritance as an incremental refinement
mechanism, we could clearly establish the correlation between Annex 17 and Doc 2320.
Finally, by coupling inheritance with the parameterization feature, we were not only
able to factorize our development, but also were allowed to resolve the vocabulary
differences between Annex 17 and Doc 2320.

Concerning the reasoning support of Focal, the declarative-like proof language
allowed us to describe the correctness and refinement proofs in a natural way. As
for the automated theorem prover Zenon, it provided us with an effective help by
discharging most of the proof obligations automatically. In terms of specifications and
proofs, Focal can be seen as a front-end for the Coq system, and at the beginning of
the EDEMOI project, the correctness and refinement theorems were proved directly
in Coq (at that time, Zenon was still highly experimental). However, any slightest
change in the Focal specification resulted in redoing most of the proof obligations,
which became intractable as the complexity of the formal models grown. The use of
Zenon allowed us to palliate this problem. In essence, it could be used to automatically
generate the corresponding Coq proof scripts in each step of the development: in the
prototyping phase, providing a set of properties and definitions (to be used by Zenon)
to be convinced that a given lemma is correctly formulated; in the finalizing phase,
providing more detailed proofs to obtain more readable specifications together with a
reasonable compilation time.

By experiencing the Focal environment within this new application area, we also
identified some suitable evolutions that might enhance the expressive power and
reasoning support of the underlying formalism. In particular, the notion of subtyping
(an enhancement to the current notion of sub-species) seems a desirable feature to
bring more flexibility to factorization and component reuse. Moreover, the integration
of temporal mechanisms to the language might also allow the expression of complex

10

STRUCTURING

behavioral properties. Regarding Zenon, we needed to handle proofs by induction and
second order properties, which are for the time being not yet supported and should
be quite important improvements to be considered for this prover in the future; at the
time of writing, induction is currently being integrated to Zenon.

2.2 CODE GENERATION FROM SPECIFICATIONS

In the same vein of providing appropriate means for structuring specifications, and
in particular, in the idea of clearly separating (abstract) specifications from (concrete)
implementations, we present a second contribution, which aims to generate imple-
mentations from specifications, more precisely purely functional code from inductive
relations. This work was initially experimented in the Coq proof assistant [129], and
is currently being adapted to the Focalize environment [133] (successor of Focal; see
Appendix A). The very first root of this work can be found in the generation of ML
programs from Typol specifications [63].

2.2.1 Functional Extraction in Coq

Contribution in collaboration with C. Dubois,].-F. Etienne,

and P--N. Tollitte (Engineering/PhD student; see Subsec.C.1.1/C.2.3 of Appx. C).
CPR team, CEDRIC (CNAM), Paris (France), 2006-2010.

Published in [49, 50] (see Sec. D.2 of Appx. D).

The idea of writing specifications and automatically extracting programs from
these specifications is quite ancient. The Lex and Yacc tools are perfect examples
of application and allow us to quickly and safely produce parsers from grammars.
Always in the domain of programming languages, extensive work has been carried out
to generate interprets, compilers and typecheckers from specifications of semantics [25,
108, 9, 63, 153]. In a more general setting, some other studies deal with the same
problem. For example, some proof assistants like Coq [106, 98] or Isabelle [17] propose
general extraction mechanisms to produce functional code from specifications and/or
proofs. The same idea is used in [7], where OCaml| programs [128] are extracted
from CASL specifications [8], and also in [19], where ML programs are extracted from
Isabelle specifications including inductive definitions of relations (this work has been
recently extended [18], in order to produce an intermediary language under the form
of an equational specification and independent from ML). Such a code generation
from specifications is motivated not only by prototyping for purposes of specification
animating or testing, but also by the possibility of offering an operational means of
code generation, which is correct w.r.t. specifications.

With an intention close to the one found in the work previously mentioned, the aim
of this contribution is to provide an extraction mechanism to translate logical inductive
specifications into functional code. Like [19], this work goes beyond semantic applica-
tions [25, 108, 9, 63, 153], even though it is a typical domain of applications for such a
work. This mechanism is presented in the framework of the Coq proof assistant [129],
but is currently being adapted to the Focalize environment [133] (see Appendix A). Coq
appears as an appropriate candidate for such a work as inductive types and inductive

2.2 CODE GENERATION FROM SPECIFICATIONS

relations in particular are the idiomatic way of building specifications. However, even
if inductive relations contain (several) computable contents, they are not considered in
the regular extraction mechanism of Coq [106, 98]. Therefore, this work is a natural
extension of Coq’s extraction. In addition, the extraction we propose is intended to

only deal with inductive relations that can be turned into purely functional programs.

This is mainly motivated by the fact that proof assistants providing an extraction
mechanism generally produce code in a functional framework; this is the case of Coq
in particular. Thus, we do not consider inductive definitions of relations that would
require backtracking, that is more a Prolog-like paradigm. In that sense, this work
separates from [25, 108, 19].

The extraction method we propose consists of two steps. The first step aims to
analyze the inductive relation in order to know if it can be turned into a function that
can compute some results. To do so, we need additional information. In particular, we
need to know which arguments are inputs and which arguments are outputs. This
information is provided by the user using the notion of modes. These modes are used
to determine if a functional computation is possible, in which case we say that the
mode is consistent. Otherwise, the mode is rejected and the functional extraction is
not possible. The notion of mode, going back actually to attribute grammars [9], is
tairly standard, especially in the logical programming community. For example, the
logical and functional language Mercury [105] requires mode declarations to produce
efficient code. Similar mode systems have already been described in [63, 19, 118]. The

second step of the extraction we propose consists in producing the functional code.

This code generation uses the mode supplied by the user and relies on a syntactical
translation of the inductive clauses defining the initial relation. It should be noted
that these two steps are based on decidable algorithms and the global procedure is
therefore fully automatic.

The extraction mechanism described above has been formalized in the calculus of
inductive construction (the underlying theory of Coq in particular), and its soundness
has also been proved. This formalization is presented in [49], which can be found
in Section D.2 of Appendix D. An implementation is available (on demand) under
the form of a prototype developed in the Coq framework. In the following, we will
illustrate the extraction method considered by means of examples, and we will also
see an extension of this method to the Focalize environment.

2.2.2 Mode Consistency Analysis

The purpose of the mode consistency analysis is to check whether a functional
execution is possible from the considered inductive relation. Basically, it is a very
simple data-flow analysis performed on each inductive clause of this relation. To
do so, a mode is required (and supplied by the user) for the inductive relation, and
recursively for each inductive relation occurring in the inductive clauses defining this
relation. Given an inductive relation, a mode is defined as a set of indices denoting
argument positions of the inductive relation and which represent the inputs of this
relation; the remaining positions are the outputs of the inductive relation. Although
a mode is defined as a set, the order of the inputs in the logical inductive type is

11

12

STRUCTURING

relevant; they will appear in the functional translation in the same order. In practice,
it is often the case to use the extraction with, either a mode corresponding to all the
arguments except one, or a mode indicating that all the arguments are inputs. With
no loss of generality, it is possible to only deal with these two kinds of modes (if more
than one output is necessary, we can consider that the outputs are gathered in a tuple).

The mode consistency analysis consists in building a set of computed variables.
Initially, this set contains the variables occurring in the inputs of the conclusion of the
selected inductive clause. Next, each premise is inspected in its order of appearance in
the inductive clause. For a given premise, we must verify that the variables occurring
in its inputs are in the set of computable variables and if so, the variables occurring in
its output (if there is an output) are added to the set of computed variables. Finally,
once all the premises processed, we must verify that the variables occurring in the
output (if there is an output) of the conclusion are in the set of computed variables and
if so, the analysis is successful. If an analysis fails on a given order of the premises,
a permutation of the premises may be operated to make the analysis successful (the
new obtained order will also have to be used during the code generation step). The
overall analysis is successful if there exists, for each inductive clause of the relation, a
permutation of the premises for which the previous analysis is successful, otherwise it
fails and the extraction is refused for this set of modes. The algorithm corresponding
to this mode consistency analysis is formally described in [49] (see Section D.2 of
Appendix D).

To illustrate this notion of mode consistency analysis, let us consider an example
with the relation add that specifies the addition of two natural numbers, i.e. given
three natural numbers n, m and p, (add n m p) defines that p is the result of the addition
of n and m. Using the syntax of Coq, this relation may be defined as follows:

Inductive add : nat — nat — nat — Prop :=
| add_O : forall n : nat, add n O n
| add_S : forall nmp : nat, add n m p— add n (S m) (S p).

where nat is the type of natural numbers, defined as an inductive type with the two
constructors O (zero) and S (successor).

For instance, let us check that the mode {1,2} (which corresponds to the computa-
tional content of addition) is consistent for the relation add. As said previously, this
consistency is verified for each constructor:

e add_O: the initial set of computed variables consists of the input variables of
the conclusion (add n O n), which is Sg = {n}; as there is no premise, we just
have to verify that the output variables of (add n O n) are in the set of computed
variables, i.e. {n} C Sy, which is the case.

e add_S: the set of input variables of add n (S m) (S p) is So = {n,m}; for the
premise, we must verify that the input variables of (add n m p) are in the set of
computed variables, i.e. {n,m} C Sy, which is the case; a new set of computed
variables is obtained with the output variables of (add n m p), that is to say
S1 = SoU{p} = {n,m, p}; finally, the output variables of add n (S m) (S p) must
be in the set of computed variables, i.e. {p} C S1, which is verified.

2.2 CODE GENERATION FROM SPECIFICATIONS

In the same way, we can verify that the modes {2,3} (which corresponds to the
subtraction function) and {1,2,3} (which represents the function verifying that the
relation is satisfied) are also consistent for the same relation.

2.2.3 Code Generation

As the mode consistency analysis, the code generation is purely syntactic and is based
on an analysis of the inductive definition of the considered relation. This analysis uses
the set of modes supplied by the user (a mode for the relation and recursively for each
inductive relation occurring in its definition), which must have been verified to be
consistent for the relation, and generates code for each inductive clause defining the
relation with the order of premises which has been used to establish the consistency
of the provided set of modes. The code generation scheme distinguishes two cases
according to whether the provided mode for the inductive definition considered
selects no output or just one output. This code generation scheme has been formally
described in [49] (see Section D.2 of Appendix D).

To understand this code generation scheme, let us see an example of extraction using
the relation add introduced previously and with the mode {1,2}, for which we have
already verified it is a consistent mode. If we use a syntax in the style of OCaml [128]
for the generated code, the header of the extraction function has the following form:

let rec addiz (p1, p2) =
match (p1, p2) with
(x code generation for inductive clauses x)

where the function has two arguments as indicated by the provided mode.

From each inductive clause, a pattern-matching clause is produced. The correspond-
ing pattern is built from the terms occurring at the input positions of the conclusion of
the inductive clause (here, at positions 1 and 2). If the terms are not linear, a renaming
is performed and a conditional expression representing the constraints between the
several variables is introduced as a guard of the pattern-matching clause. In our case,
the patterns are all linear, but this is not the case with the mode {1,2,3} (with no
output) for example. Each inductive clause is analyzed in the same order as in the
definition of the inductive relation, and the extracted function becomes:

let rec addiz (p1, p2) =
match (p1, p2) with
| (n, O) = (x code generation for set of premises 1 x)
| (n, S m)— (x code generation for set of premises 2 x)

The right-hand side parts of the pattern-matching clauses are made of the transla-
tions of the premises and the expected result (term occurring at the output position).
The scheme of these translations is performed as follows:

match f1 (tn, ey t1n1) with
| out; —
(match fo (t21, ..., ta,) with
| out, —

(... = (x result of the inductive clause x)))

13

14

STRUCTURING

where f; is the generated function for the predicate of the premise k, ty; ... ty,, the
input terms of the premise k, and out; the output term of the premise k.

The missing code fragment for the first inductive clause is immediate, as this clause
has no premise. In this case, the result is just the output term of the conclusion of the
inductive clause, here n. For the second inductive clause, we follow the scheme given
above with one recursive premise. Finally, we obtain the following code:

let rec addiz2 (p1, p2) =
match (p1, p2) with
|l (n, O) > n
Il (n, S m)—
(match addiz (n, m) with
' p— S vp);

With a mode with no output (here with the mode {1,2,3} for instance), the code
generation is a little different, and the inductive relation is actually extracted as a
boolean function. The interested reader is invited to refer to [49] (see Section D.2 of
Appendix D), where the extraction with such modes is fully described with some
examples in particular.

2.2.4 Extension to Focalize

The previous work has been formalized and developed in the context of the Coq
proof assistant. A recent extension of this work [50] has consisted in integrating
a similar mechanism into the Focalize environment [133] (successor of Focal; see
Appendix A). Focalize is a quite appropriate environment for this experiment, as it
relies on a language which provides a neat separation between specifications (species)
and implementations (collections). This extension is actually more than a simple
adaptation of the previous ideas developed in the framework of Coq, and brings some
major evolutions in this domain of functional extraction from inductive relations. Here
are some of these evolutions:

e The extraction mechanism produces functional code within the framework of
the Focalize environment. Thus, contrary to the development realized in Coq, the
specification language and the target language for extraction are the same, so that
we obtain genuine Focalize code after extraction. As a consequence, this raises
some new problems due to the constraints of consistency of the specification
language. In particular, we have to deal with the termination of the extracted
functions, and currently, we only deal with structural recursion.

e Correctness theorems are also generated during the extraction process. As
expected, these theorems ensure that given some inputs, the result returned by
the extracted function verifies (at least) one inductive clause of the considered
relation. For a given extracted function, these theorems are split according to
the different inductive clauses (there is one theorem per inductive clause), and
are produced automatically (the fact of only considering structural recursion
simplifies quite a lot the generation of the corresponding proofs).

2.2 CODE GENERATION FROM SPECIFICATIONS

e There is no notion of inductive relation in Focalize, i.e. a relation seen as the
smallest set verifying given properties. As a consequence, the extraction is made
w.r.t. a set of properties which is selected by the user and which is supposed
closed to build the corresponding inductive relation to be extracted. Therefore,
contrary to Coq where the relation is represented by a fixed and closed inductive
type, the extraction in Focalize does not require a closed type and only considers
the type as closed when an extraction is required. The situation is then much
more flexible, since even after a given extraction, the user still has the opportunity
to enrich the type considered for the extraction by adding some inductive clauses.
In the same way, the user always has the possibility to ask for another extraction
by omitting some inductive clauses.

To illustrate these evolutions, let us consider the example of the addition relation
considered previously in Coq. This relation is introduced by the signature add, and
uses the type nat defined by the two constructors Zero and Succ. The relation add
is then specified by the two properties addZ and addS as follows (the code below
uses the syntax of Focalize, the new version of the Focal compiler, which is slightly
different from the syntax of the previous versions of the Focal compiler described in
Appendix A):

type nat = | Zero | Succ (nat);;

species AddSpecif =
signature add : nat — nat — nat — bool;
property addZ : all n : nat, add (n, Zero, n);
property addS : all nmp : nat, add (n, m, p) —
add (n, Succ (m), Succ (p));
end;;

The extraction is required by the user using the new command “extract”, which has
been added to the Focalize language. In order to clearly separate specification from
implementation (one of the main leitmotivs of Focalize), the user must define a new
species which inherits from the appropriate specification and which will contain the
extraction command(s). For instance, species AddImpl below requires the extraction of
the addition of two natural numbers from the relation add defined by the properties
addZ and addS in species AddSpecif:

species AddImpl =

inherit AddSpecif;

extract addi2 = add (1, 2) from (addZ addS) (struct 2);
end;;

where add12 is the name of the extracted function, (1, 2) the extraction mode, (addZ
add$S) the list of properties considered for the extraction, and “struct” is followed by
the position of the argument which structurally decreases along the recursive calls.

The command “extract” invokes the extraction and can be seen as the definition
of a new Focalize function (here function addi12) if the extraction is successful. The
generated code itself is transparent for the user (who can only see the extraction
command and not the generated code), and is very similar to what we obtain in the

15

16

STRUCTURING

context of Coq. The only difference between the two code generations actually resides
in the absence of guards in the pattern-matching of Focalize, which imposes to insert
the non-linearity conditions as conditional expressions into the right-hand side parts
of the pattern-matching clauses. This workaround is correct insofar as the several
conclusions of the inductive clauses do not overlap, which is actually imposed by our
extraction mechanism (see [50] for more details). Thus, in our example, the generated
code for the function add12 is the following;:

let rec addiz (p1, p2) (struct p2) =
match (p1, pz2) with
| (n, Zero) — n
| (n, Succ (m)) —
(match addi2 (n, m) with
' p— (Succ (p)));

As said previously, the extraction command also provides automatically the cor-
rectness theorems (the corresponding properties together with the proofs). These
correctness proofs allow us to extend the use of the generated code to applications
which require a high level of safety. Even if this code generation is essentially used
with the intention of animating specifications and using the extracted code as an oracle
to validate some tests, these correctness proofs allow us to ensure a certain level of
confidence in the oracle. In the same way as for the code generation, the generation of
the correctness theorems is transparent for the user (who can use them but cannot see
them) and actually depends of the provided mode (with no or one output). In the case
of one output, as in our example of the function add12 extracted from the relation add,
new properties are generated from the properties considered for the extraction (one
property is generated per extraction property). For instance, the correctness theorems
for the extraction function add12 seen previously are generated as follows:

theorem addi2_addZ : all n : nat, add (n, Zero, addiz (n, Zero))
proof = coq proof {x intro n; simpl; apply addZ. x};

theorem addi2_addS : all nmp : nat, add (n, m, addiz (n, m)) —
add (n, Succ (m), addiz (n, Succ (m)))
proof = coq proof {x intros n m p H; simpl; apply addS; auto. x};

where “coq proot” indicates that the provided proof is a Coq proof, which must be
directly inserted (without any processing) into the Coq file produced by the Focalize
compiler. The reason for using raw Coq proofs instead of proofs managed by Zenon,
the automated theorem prover and reasoning support of Focalize, resides in the fact
that Zenon still does not fully handle induction reasoning (some work in this domain
is in progress by D. Doligez, and we should be able to provide genuine Focalize proofs
of these theorems supported by Zenon in the short term).

These proofs follow a same scheme of proof, which consists in computing with the
function add12, and then applying the corresponding property (among the properties
selected in the extraction command). In the case of a mode with no output, the code
and proof generation schemes are quite different; the interested reader can refer to [50]
to get some examples with this kind of mode.

AUTOMATING

"The general case of the Entscheidungsproblem of the engere Funktio-
nenkalkiil is unsolvable."

Alonzo Church.

A Note on the Entscheidungsproblem.
The Journal of Symbolic Logic.

Vol. 1, No. 1, pp. 40-41, Mar. 1936.

The purpose of this chapter is to tackle the problem of automation in theorem proving,
and to propose several specific directions and in particular three groups of contribu-
tions by the author. The first contribution consists in providing appropriate means
to increase automation in (interactive) proof assistants; it does not intend to increase
automation itself but to improve the different tools which allow us to build suitable au-
tomatic proof procedures. This contribution resides in the design of a tactic language,
called Ly, developed in the framework of the Coq proof assistant [129]. This new
meta-language allows the user to write not only small and local automation routines,
but also significant and complex proof procedures. This language has received a very
favorable welcome from the Coq users since its introduction in the Coq distribution.
Due to lack of space and as this contribution is more former than the two following
ones, it is described in Section B.2 of Appendix B, in which we draw some perspec-
tives regarding the future of meta-languages, such as L. The second contribution
comes within the scope of the different possible interactions between deduction and
computer algebra. The author is a very active member of the community working
in this domain, and is currently a trustee of the Calculemus interest group [126] (the
author was co-chair of Calculemus 2010 [11] in particular). This contribution can
be actually divided into several sub-contributions. Among these sub-contributions,
there is the development of a Maple mode for Coq, which allows us to import into Coq
computations from Maple [138] over fields. Afterwards, this mode has been extended
to deal with gcds over polynomials, in order to implement a quantifier elimination
procedure over algebraically closed fields in the context of Coq. Still in the idea of
benefiting from external computations as oracles, a procedure has been designed
for the Focal environment [13, 132] to test the validity of properties over real closed
tields using the computation of cylindrical algebraic decomposition performed by a
routine of Axiom [125]. Finally, the third and last contribution is along the same lines
of skeptical computations, and tries to apply this idea to automated deduction with
two sub-contributions related to the Zenon automated theorem prover [24], which is

17

18

AUTOMATING

the reasoning support of Focal in particular. The first sub-contribution deals with the
proofs produced by Zenon, and aims to translate them into Coq proofs for checking.
The second sub-contribution intends to validate supplementary rules involved in
applications developed using the B method [1] by means of Zenon proofs, which are
translated back to B proofs.

3.1 DEDUCTION AND COMPUTER ALGEBRA

Automation in proof assistants necessarily requires a high power of computation,
since proof assistants also deal with computation and not only with deduction. Some
domains of computer science are completely focused on these aspects of computation.
For example, this is the case of computer algebra, which aims to develop algorithms,
programs and systems, that facilitate the use of symbolic mathematics on computers.
In the following, we present three contributions which realize concrete interactions
between proof assistants (PAs) and computer algebra systems (CASs). In particular,
we describe two experiments involving Coq [129] and Maple [138], and a third one
between Focal [13, 132] (see Appendix A) and Axiom [125].

3.1.1 A Maple Mode for Coq

Contribution in collaboration with M. Mayero

and with the assistance of T. Coquand.

Programming Logic Group, Chalmers University of Technology.

Goteborg (Sweden), 2001-2002. Published in [52] (see Sec. D.3 of Appx. D).

As has been rumored, computation generally appears as a weak point of PAs.
This rumor, like every rumor, has a grain of truth in it, but is not entirely true
either. Actually, if it is difficult to write efficient functions in a PA, it is mainly
due to the constraints imposed by the environment of the PA, which must respect
the underlying theory upon which it relies on. For example, termination, which is
required for consistency purposes, is one of these constraints. Another source of
potential inefficiency for functions in PAs resides in the choice of data structures. It is
well know in the theory of complexity that data structures play a fundamental role
in the complexity of an algorithm. However, we are not really free to choose any
data structures in PAs, as we tend to favor data structures which will simplify the
corresponding proofs of correctness. In addition, a data structure appropriate for
efficiency is not necessarily suitable with regard to the feasibility of correctness proofs,
and vice versa. For instance, for functions over natural numbers, Peano arithmetic
is the right way to go when doing proofs over these functions, while we prefer to
use binary integers when executing these functions. As a consequence, it is not rare,
even these days, to get validated code, which appears unusable in practice for lack
of reasonable efficiency; conversely, some functions are so efficient and tricky that
tackling their validation is almost impossible.

One way to reconcile validation with efficiency is to sacrifice the global correctness
of a function for a notion of local correctness. More precisely, this means that we
do not prove the correctness of a function, but for each application of this function,

3.1 DEDUCTION AND COMPUTER ALGEBRA

we prove that the result is correct. Thanks to local correctness, the function is not
constrained anymore. In particular, it is possible to use any data structure, which
is considered as appropriate for efficiency reasons. Furthermore, it is also possible
to deal with non-terminating functions, and therefore to completely externalize the
function. This is possible because the proof of local correctness only considers the
result coming from the application of the function, and does not inspect the function
itself, which is seen as a black box. However, as the correctness is only local, such
functions cannot be used as usual in safety and security framework. Thus, such
functions are intended to be used when we need efficient computations together with
correctness guarantee of these computations. CASs are typical examples of systems
which require such guarantee, as they provide powerful computations but without
verifying side conditions, and they may then produce incorrect results. The present
contribution proposes to make PAs and CASs interact in a fair way, i.e. in such a way
that PAs can get efficient computations from CASs, and that CASs can benefit from
guarantee over their computations in return.

Interactions between PAs and CASs

H. Barendregt and A. M. Cohen define in [14] several approaches to import CAS
functionalities into PAs and conversely to bring more confidence to CAS computations.
These different approaches actually depend on the degree of confidence between
the PA and the CAS. For example, given a term ¢, if ' is a term resulting from
a computation over t by a CAS, a first approach, called the “believing approach”,
consists in considering this computation as correct without any additional verification;
concretely, this means we assume the equality + = ' is an axiom. This solution is not
satisfactory in terms of consistency, as we can imagine how easy it is to introduce
false assumptions coming from incorrect computations. Another approach, called
the “sceptical approach”, resides in not trusting the previous equality, which must
therefore be proved in the PA. To do so, there are actually two methods: either the
result is verified independently of how the CAS obtained it, or the PA takes a trace of
the rules that the CAS applied, and then uses that as a suggestion for what theorems
should be used to construct a proof of the result. The latter method exactly follows
the computation step by step and certifies each step; for instance, given a polynomial
P, if P’ is a factorized form of P, we will verify that each step of the factorization
process respects the properties of the ring of which P is a member. As a consequence,
this method may turn out to be as costly as the corresponding computation is. On
the contrary, the former method is independent from the computation, and relies on
whether the verification of the equality t = #' is possible without reproducing the
computation from ¢ to ¢’ or not; in the case of the example above, it is possible to verify
that P = P’ without refactorizing P, simply by normalizing P and P’, and comparing
the two normal forms. The previous example is exactly the kind of problems we aim
to deal with in the current contribution, which is described more precisely below. A
last approach to combine PAs and CASs is the “autarkic approach”, which consists in
realizing the CAS computations within the PA. If this approach is appropriate in terms
of confidence, it still keeps the same drawbacks mentioned previously and which are
essentially due to the constraints imposed by the environment of the PA.

19

20

AUTOMATING

If the verification proposed in the skeptical approach allows us to increase the
degree of confidence, it does not provide local correctness (introduced above) though.
For instance, if we consider the example of the factorization of P, verifying that P = P’
does not ensure that the CAS computation actually realizes a factorization of P. This
verification just guarantees that the CAS computation uses “legal” operations over
polynomials. Thus, it is possible to go further with this skeptical approach by imposing
that the result of the CAS computation verifies a given specification. This method
can be seen as a hybrid method compared to the two methods already mentioned,
as it does depend on the computation itself but may also require some additional
information from the CAS, which can be seen as certificates. For example, given two
polynomials P and Q, if we ask a CAS to compute the gcd G of P and Q, we may
also ask the CAS to return the corresponding quotients P; and Qj, and cofactors A
and B, such that we can simply verify that G divides P and Q, i.e. P = GP; and
Q = GQ4, and that the Bézout relation holds, i.e. AP + BQ = G; see Subsection 3.1.2
for an example using this relation to verify computations involving polynomials over
algebraically closed fields. It should also be noted that such a method relies on
the feasibility of verifying a result against a given specification. In some cases, this
verification may turn out to be very complex, and even as complex as the proof of
global correctness. For instance, given a real closed field E and A a set of polynomials
in r variables with coefficients over Z, it seems quite difficult to verify that the result
of a decomposition D of E” is an A-invariant Cylindrical Algebraic Decomposition
(CAD) [38] of E" without performing the algorithm of CAD itself and proving its
correctness; see Subsection 3.1.3 for an example involving CAD, and which, in the
absence of local or global correctness proofs, proposes to use CAD to test the validity
of propositions over real closed fields.

Computations from Maple to Coq

The present contribution [52] (see Section D.3 of Appendix D) concerns an experiment
which has consisted in building a bridge between Coq [129] and Maple [138]. In
this experiment, computations over fields are realized in Maple and then imported
into Coq, which is asked to validate these computations. According to the different
approaches seen previously, this interface between Coq and Maple is a skeptical
approach in the weak sense of the term, i.e. we aim to validate computations but
not against specifications. Therefore, it is not our intention to provide neither local
nor global correctness of the exported Maple routines. Apart from the fact that
Maple is both popular and easy to use, the choice of Maple for performing CAS
computations is not motivated by specific features of Maple, as the exported functions
(described below) are actually basic from the computer algebra point of view; in a
way, some other CASs could also have been appropriate as much as Maple. However,
the choice of Coq for validating the CAS computations actually relies on the fact
that the corresponding validation can be done automatically. This validation is
managed by the tactic “field” [51, 52] (see Section D.3 of Appendix D), which aims
to solve equalities between algebraic expressions over fields. This tactic is entirely
written in Ly [44, 46, 45] (see Section B.2 of Appendix B), and in a total reflexive
way [27, 78], which ensures its correctness in particular. As the problem is not

3.1 DEDUCTION AND COMPUTER ALGEBRA

decidable in general, the tactic also generates some side conditions (typically that
some expressions occurring in inverses must be non-zero), that the user must prove
manually. Even though it was not the initial goal (which was actually to automate
proofs over real numbers in Coq), this tactic has actually opened an opportunity of
building bridges between Coq and CASs. It should also be noted that this tactic also
offers a means to verify the result of a CAS computation independently of how the
CAS obtained it, since the principle of this tactic consists in normalizing both sides
of the equality and comparing the two normal forms (see [51, 52] and Section D.3 of
Appendix D for more details), and not in reproducing the CAS computation.

The Maple functions dealing with algebraic expressions over fields which have
been exported are the following: “simplify” which applies simplification rules to
an expression, “factor” which factorizes a multivariate polynomial, “expand” which
expands an expression, and “normal” which normalizes a rational expression. This
set of functions is limited, but adding other functions (also with higher arities) is quite
direct and very easy for the user. Let us illustrate the use of one of these functions in
order to show how the bridge between Coq and Maple actually works. Given x and
y two non-zero elements of an ordered field, we would like to prove the following
inequation:

+

(

RiIw

)xy—(xx+yy)+1>0

<R

To do so, we call the function “simplify” of Maple with the left-hand side member of

the inequation as argument, and the application of this function returns 1 as result.

As we have adopted a skeptical approach, an equation between the initial term and
the result must be generated (and proved afterwards) as follows:

(=+

RI<

yxy—(xx+yy)+1=1

<R

To prove this equation, we call the tactic “field” of Coq, which succeeds and generates
the side condition x.y # 0. This side condition is trivially true by hypotheses. Once
this equation proved, we can replace the initial left-hand side member by 1 in the
inequation, and we then obtain the new inequation 1 > 0, which is trivially true. It
should be noted that in this computation, everything is automatic except the proofs
of the side conditions generated by the application of the tactic “field”. This high
automation nature tends to assert the computational aspect of this mechanism, as the
user should not be surprised by too many deduction obligations coming from a given
computation. For other (more complex) examples of computations, the reader can
refer to [52] (see Section D.3 of Appendix D).

The implementation of this interface between Coq and Maple is available as a Coq
contribution (see [129]). The implementation is quite light and the corresponding code
is very short with about 300 lines of ML (we use a basic system of pipes between Coq
and Maple). The contribution also contains some examples of use for each imported
Maple function.

21

22

AUTOMATING

3.1.2 Proofs over Algebraically Closed Fields

Contribution in collaboration with M. Mayero

and with the assistance of T. Coquand.

Programming Logic Group, Chalmers University of Technology.

CPR team, CEDRIC (CNAM).

Goteborg (Sweden), 2001-2002; Paris (France), 2002-2005. Published in [53].

This contribution [53] can be seen as a quite direct sequel of the previous work,
and consists in building an automated proof procedure which makes use of CAS
computations. The idea is that importing computation into a PA is somewhat artificial
if it is not used for increasing the automation of this PA. Thus, we propose the
implementation of a proof procedure, which aims to solve systems of polynomial
equations and inequations over algebraically closed fields. An Algebraically Closed
Field (ACF) K is a field which has no proper algebraic extension, i.e. every algebraic
extension is K itself. This means that every non-constant polynomial of K[X] has a root
in K. With respect to the usual properties of field, this adds the following condition:

VP € K[X].deg(P) > 0= 3dx € K.P(x) =0 (3.1)

where deg(P) denotes the degree of P.

The field of complex numbers, which is the algebraic closure (i.e. the algebraic
extension which is algebraically closed) of the field of real numbers, is an example
of ACF. The field of algebraic numbers, which is the algebraic closure of the field of
rationals, is another example of ACEF. It can be shown that equation (3.1) is equivalent to
what is known as the Fundamental Theorem of Algebra (FTA), also called D" Alembert’s
theorem' when proved over the field of complex numbers, which states that, given an
ACF K, every polynomial of K[X] of degree n > 0 has exactly n roots (which may not
be distinct). From a mathematical point of view, this theorem has the nice and direct
consequence that polynomials over K[X] can be factorized and it is possible to solve
polynomial equation and inequation systems of the following form:

{Pl(X):O,...,Pn(X)zo -
Q1(X) #0,...,0m(X) #0 3.

To solve this kind of system, we only have to factorize all the polynomials and
to choose a common root of all P; which is not a root of any Q;. However, from
a computational point of view, this process of factorization is not fully automatic
in general. It can only be done in some particular cases such as over the field of
complex numbers C using, for instance, Kneser’s constructive proof of equation (3.1)
(see the FTA project [134]). Moreover, in practice, these methods turn out to be
unsatisfactory: the former raises a problem of complexity (in general, the size of the
minimal polynomial defining a splitting field of a polynomial is exponential in the
degree), whereas the latter can produce arbitrary algebraic numbers as roots (typically,
in [134] for C, roots are pairs of limits of Cauchy sequences) and these are generally
difficult to deal with.

Due to the first serious attempt at a proof of the FTA by D’Alembert in 1746, even if the first proof is
usually credited to Gauss in his doctoral thesis of 1799.

3.1 DEDUCTION AND COMPUTER ALGEBRA

In this contribution [53], we aim to solve systems such as (3.2), and consider
an alternative method, called quantifier elimination (due to the implicit existential
quantifier over the main variable X of the polynomials, we are trying to eliminate),
which is mainly based on the idea of getting rid of the polynomial parts which do
not contain the solution. The proposed method heavily relies on computations of
polynomial gcds, which make it possible to simplify the system to be solved. Naively,
we might think that polynomial gcd is a simple operation, which can be carried out in
an autarkic way, but this would tend to underestimate the prolific nature of research
in this domain. In fact, computer algebra provides many different algorithms of
polynomial ged with a full range of complexities, and some of them are implemented
in CASs. Therefore, the principle of the considered implementation is to integrate
this method into a PA, but also in externalizing the computations of gcds which must
be performed by a CAS. De facto, the Maple mode for Coq [52] (see Subsection 3.1.1)
appeared as a privileged candidate, and this method was then developed as a proof
procedure for Coq [129], with the support of Maple [138] for gcd computations.

Quantifier Elimination over ACFs

In the following, given an ACF K, we consider polynomials over K'[X] where K’ C K
s.t. the equality to zero can be decided. In addition, there is no constraint over
the characteristic of K, which may be non-zero. The algorithm we propose to solve
systems such as (3.2) is precisely described in [53]. Thus, given P the gcd of P; and
Q the product of Q; (instead we could also consider the lcm of Q;), it mainly relies
on whether P and Q are relatively prime or not: if they are, the system is reduced to
P = 0, otherwise it looks for a solution for the system P; = 0 and G # 0, where G is
the gcd of P and Q, and where P is s.t. P = GP;. There are also some particular cases
depending on whether n or m are zero or not (i.e. some degenerate cases where there
is no P; or no Q;); these cases are also handled and presented in [53]. Let us give an
example of application of this method with the following system:

3X3+10X24+5X+6 =0
2X24+5X -3 #0

Given P = 3X?® + 10X2 +5X + 6 and Q = 2X? +5X — 3 the two polynomials
involved in the system above, we first have to compute the gcd of P and Q, which is
G = X + 3. Therefore, we are in the case where the two polynomials are not relatively
prime, and given P; = 3X? + X + 2 s.t. P = GP;, the previous system can be turned
as follows:

324+ X+2=0
X+3#0

Again, we have to compute the gcd of P; and G, which results in 1. As the two
polynomials are relatively prime, the system is equivalent to P; = 0, which has a
solution by the definition of ACF.

The reader can refer to [53] for additional examples of application of this procedure,
as well as for the proof of decidability of this problem (a constructive proof which
results in the extraction of the method described above).

23

24

AUTOMATING

Implementation in Coq using Maple

The previous method was developed in Coq [129] as an extension of the Maple
mode [52] (see Subsection 3.1.1) and using polynomials with coefficients over Q
(so that the previous constraints are respected, i.e. the equality to zero can be decided
and the gcd remains a polynomial with coefficients over Q). The externalized com-
putation performed by Maple [138] is the gcd operation. As said previously, this may
seem a little excessive to externalize this operation, since if K is a field, then K[X] is
a Euclidean domain, so that ged(P, Q) for P,Q € K[X] can be easily computed by
the (generalized) Euclidean algorithm and therefore in an autarkic way. However,
it is well known that this algorithm suffers severely from coefficient growth in the
intermediate steps, and it is clearly unacceptable in practice. More complex algo-
rithms, such as Brown-Collins’ subresultant algorithm [37, 28], are therefore far more
appropriate. Thus, it appears wiser to let specialized tools such as CASs handle this
kind of problems, and to simply call them when such computations are needed.

The externalization of the gcd computation respects the skeptical approach of the
Maple mode for Coq, and is even stronger in the sense that the result provided by Maple
is required to be actually the gcd and not only a divisor. This constraint is imposed by
the method presented above, which relies on some theorems involving gcd. To ensure
this constraint, the idea is to use the Bézout relation, i.e. given P, Q and G three
non-zero polynomials, if G divides P and Q, and if there exist two polynomials A and
B s.t. AP+ BQ = G then G is the gcd of P and Q. This relation has the advantage
of allowing us to avoid to recompute the gcd within Coq when verifying the Maple
computation. Nevertheless, in addition to the gcd, it requires further information,
such as the two quotients P; and Q; s.t. P = GP; and Q = GQj, and the two cofactors
A and B. The former information is used to verify that G is a divisor of P and Q, while
the latter allows us to verify the Bézout relation. This additional information provided
by the CAS can be seen as certificates which are intended to help the PA prove the
correctness of the computation. However, some of them are little more than simple
certificates, for example, the quotient P, is also used in the procedure itself (see the
example provided previously). Concretely, the validation consists in verifying three
polynomials equations, which is automatically done using polynomial operations
and comparing polynomial coefficients by means of the tactic “field” [51, 52] (see
Section D.3 of Appendix D). In this way, the call to Maple is quite transparent for the
Coq user.

The reader can refer to [53] for some examples of use of this implementation in the
context of the ACF C of complex numbers, and handling polynomials with coefficients
over Q.

3.1.3 Tests over Real Closed Fields

Contribution in collaboration with R. Rioboo
and S. Toumi (Master student; see Subsec.C.2.4 of Appx. C).
CPR team, CEDRIC (CNAM), Paris (France), 2009.

The aim of the present contribution was to extend the work over algebraically
closed fields [53] (see Subsection 3.1.2) to real closed fields, while keeping a skeptical

3.1 DEDUCTION AND COMPUTER ALGEBRA

approach. However, the several algorithms applied in the context of real closed fields
are quite different from those used for algebraically closed fields, and contrary to
what one might think, nothing of the previous experiments between Coq [129] and
Maple [138] can be actually reused. Moreover, some additional difficulties regarding
the results returned by the considered algorithms tend to thwart the opportunity
of verifying the correctness of these results in an independent way, i.e. without
proving the global correctness of these algorithms, which is a quite significant task.
Nevertheless, these results can be exploited in another way, as an oracle for a test
procedure, which can be used very early in the development life cycle during the
analysis phase to determine the relevance of the set of system requirements, and also
during the steps of prototyping when building a working model. This test procedure,
which is described in detail in the following, was developed in the framework of the
Focal environment [13, 132] (see Appendix A), and by means of an interface with the
Axiom computer algebra system [125].

A Real Closed Field (RCF) E is a field for which there is a total order on E making
it an ordered field such that, in this ordering, every positive element of E is a square
in E and any polynomial of odd degree with coefficients in E has at least one root in
E. Another equivalent definition of a RCF E is that E is elementarily equivalent to the
field R of real numbers, i.e. it has the same first-order properties as the reals, which
means that any sentence in the first-order language of fields is true in E if and only if
it is true in IR. Some examples of RCFs are the field R of real numbers, the field of
real algebraic numbers, and the field *IR of hyperreal numbers. It is possible to build
RCFs from ordered fields by means of the Artin-Schreier theorem, which given an
ordered field F states that F has an algebraic extension, called the real closure E of F,
such that E is a RCF whose ordering is an extension of the given ordering on F, and
is unique up to order isomorphism. For instance, the real closure of the field Q of
rational numbers are the real algebraic numbers.

If the theory of real closed fields clearly lies within the domain of algebra, it was
actually taken up with enthusiasm by logicians. By adding to the ordered field
axioms, the axiom asserting that every positive number has a square root, and the
axiom scheme asserting that all polynomials of odd order have at least one real
root, we obtain a first-order theory. In 1948, A. Tarski [122] proved that this theory
including the binary predicate symbols “=", “#”, and “<”, and the operations of
addition and multiplication, admits elimination of quantifiers, which implies that it is
a complete and decidable theory. This means that there exists an algorithm able to
decide whether a logical formula, which is a combination of quantified polynomial
equalities or inequalities with rational coefficients, is true or false. Thus, this algorithm
can be applied to every problem which can be decomposed into a problem of first-
order real arithmetic. In particular, this is the case of real algebraic geometry, which
deals with algebraic varieties and which is therefore a decidable theory since it is
also a model of the real field axioms. However, the initial algorithm proposed by
Tarski has non-elementary complexity, which makes it unusable in practice except
for very simple problems. In 1975, G. E. Collins proposes a drastic improvement
with the algorithm of Cylindrical Algebraic Decomposition [38] (CAD), whose the
complexity is “only” doubly exponential in the number of variables and polynomial in
the degree of polynomials. Later work, see [15] for example, will achieve to improve

25

26

AUTOMATING

this complexity even better, but no implementation of these methods has been realized
so far. As for CAD, there exist some implementations, but still very few due to the
intrinsic difficulty of this algorithm for which it is quite complicated to provide a
correct implementation. Thus far, there are Mathematica [139], where CAD has been
developed by A. W. Strzebonski [119], QEPCAD [147] by H. Hong and others, which
performs partial CAD and uses it for quantifier elimination, and the implementation
of CAD in Axiom [125] by R. Rioboo. We decided to use the second implementation,
as we actually just need CAD for our experiment (and not quantifier elimination), and
as R. Rioboo, one of the participants of the present contribution, is also the author of
this implementation, which was of great help when developing the interface between
Focal and Axiom.

Cylindrical Algebraic Decomposition

Given a RCF E and A a finite set of polynomials in r variables and with integer (or
rational) coefficients, the aim of the algorithm of CAD is to produce a partition of E’,
which is adapted to A, i.e. the sign of each polynomial of A is constant over each cell
of this partition. As can be guessed, there may exist many of such partitions, and
the partitions produced by the algorithm of CAD additionally verify some specific
properties. More precisely, let us define what a CAD is. In the following, we use the
definition of CAD described in [5, 6], which is a somewhat different (but equivalent)
definition than that in [38].

We call a region, a nonempty connected subset of E’. For a region R, the cylinder
over R, written Z(R), is R x E. A section of Z(R) is a set s of points (x, f(x)), where x
ranges over R and f is a continuous real-valued function on R (in other words, s is the
graph of f). We say such an s is the f-section of Z(R). A sector of Z(R) is a set § of all
points (x,y), where x ranges over R and f1(x) < y < f2(x) for continuous real-valued
functions f; < f. The constant functions f; = —oo and f, = +o0 are allowed. Such
an § is the (f1, f2)-sector of Z(R). Clearly, sections and sectors of cylinders are regions.
Note that if r = 0, then R = E? is reduced to a point and Z(R) = E!, such that any
point of E! is a section of Z(R) and any open interval in E! is a sector of Z(R).

For any subset X of E", a decomposition of X is a collection of disjoint regions whose
union is X. Continuous real-valued functions f; < fo < ... < fi, k > 0, defined on
R, naturally determine a decomposition of Z(R) consisting of the following regions:
(1) the (f;, fir1)-sectors of Z(R) for 0 < i < k, where fy = —oc0 and f;,1 = 400, and
(2) the fi-sections of Z(R) for 1 <i < k. We call such a decomposition a stack over R
(determined by fi, ..., fx).

A decomposition D of E" is cylindrical if either (1) r = 1 and D is a stack over
E% or (2) r > 1, and there is a cylindrical decomposition D’ of E'~! such that for
each region R of D’, some subset of D is a stack over R. It is clear that D’ is unique
for D, and thus associated with any cylindrical decomposition D of E" are unique
induced cylindrical decompositions of Eifori=r—1,r—2,...,1. Conversely, given
a cylindrical decomposition D of Ef with i < r, a cylindrical decomposition D of E is
an extension of D if D induces D.

A subset of E" is semi-algebraic if it can be constructed by finitely many applications
of of the union, intersection, and complementation operations, starting from sets of

3.1 DEDUCTION AND COMPUTER ALGEBRA

the form {x € E" | F(x) > 0}, where F is an element of Z|[x,...,x,], the ring of
integral polynomials in r variables. We write I, to denote Z|[x3, ..., x;]. There exists
an equivalent definition using the notions of definable set and defining formula (by
formula, we mean a well-formed formula of the first order theory of RCFs). A definable
set in EX is a set S such that for some formula Y(x1,...,xx), S is the set of points in EX
satisfying ¥. ¥ is a defining function for S. A definable set is semi-algebraic if it has a
defining formula which is quantifier-free. It is well-know that there exists a quantifier
elimination method for RCFs [122]. Hence a subset of E" is semi-algebraic if and only
if it is definable.

A decomposition is algebraic if each of its regions is a semi-algebraic set. A
Cylindrical Algebraic Decomposition (CAD) of E" is a decomposition which is both
cylindrical and algebraic.

Let X be a subset of E’, and let F be an element of I,. F is invariant on X (and
X is an F-invariant), if F has a constant sign on X (positive, zero, or negative). Let
A ={Ay,..., A} asubset of I,. X is A-invariant if each A; is invariant on X.

Given a set A C I, the algorithm of CAD by Collins [38] provides an A-invariant
CAD of E’, i.e. a CAD of E" for which each region is A-invariant. Note that a set
A C I does not uniquely determine an A-invariant CAD D for E’. Since any subset of
an A-invariant region is also A-invariant , we can subdivide one or more regions of D
to obtain another “finer” A-invariant CAD. We should also note that all the previous
remains valid for I, = Q[xy,..., x,].

Let us illustrate the notion of A-invariant CAD with an example. Given A C I, the
set {A1(x,y)} = {xy}, the following collection of regions forms an A-invariant CAD
of E2:

{(x,y) |[x<O0andy >0} {(x,y)|x>0andy >0}
{(x,y) | x<O0andy =0} {(x,y)|x>0andy =0}
{(x,y) | x<0and y <0} {(x,y)|x>0andy <0}
{(x,y) [x=0}

We will not describe the CAD algorithm of Collins here, as we are just interested
in using the result of the algorithm in this contribution (we will see how below).
But, basically, the general algorithm consists of three phases: projection (computing
successive sets of polynomials in I,_q,I,»,...,I;; the zeros of each set contain a
“silhouette” of the “significant points” of the zeros in the next higher dimensional
space), base (constructing a decomposition of E'), and extension (successive extension
of the decomposition of Eltoa decomposition of E%, E? to E3,..., E~1 to E"). The
reader can refer to [38, 5, 6] for more details.

A computation of CAD can be used for several purposes, such as quantifier elimina-
tion (see the QEPCAD tool [147], for instance), i.e. in order to transform a first-order
formula into an equivalent quantifier-free formula, or verification of the validity of
tirst-order formulas. In this contribution, we focus on the latter application of CAD,
which can be easily performed using an arborescent representation of the CAD. We
will detail this example of use in the following. It is important to note that the correct-
ness of this example of application relies on the fact that the computed decomposition
is actually an A-invariant CAD, where A is the set of input polynomials built from
the set of first-order formulas to be verified. The question is then the following: is it

(3-3)

27

28

AUTOMATING

possible to verify that a given decomposition D is an A-invariant CAD? This problem
is undecidable in general (verifying that a collection of sets is a decomposition of
E" is still undecidable), and this tends to ruin any hope of externalizing the CAD
computation using a skeptical approach (as can be done in the contributions described
previously in Subsections 3.1.1 and 3.1.2). However, even if we cannot ensure that a
given decomposition is a CAD, we can use it for testing purposes, as a CAD appears
to be a very precise oracle when testing first-order formulas. In particular, this allows
us to increase the degree of confidence in the relevance of a set of system requirements
built during an analysis phase for example. Thus, in this contribution, we propose
a test procedure for first-order formulas over RCFs and which is based on the CAD
algorithm of Collins [38].

A Test Procedure using CAD

The test procedure introduced above for verifying first-order formulas over RCFs was
implemented as an interface between the Focal environment [13, 132] (see Appendix A),
and the Axiom computer algebra system [125]. The choice of Focal is essentially
motivated by the significant library of computer algebra developed by R. Rioboo,
and which provides a large part of the material (such as recursive and distributed
polynomials, a preliminary version of real closure, etc) necessary to the elaboration of
this test procedure. As for Axiom, the choice is driven by the existing implementation
of Collins” CAD algorithm [38] by R. Rioboo, who is also one of the participants of
this contribution. As said previously, there exist very few implementations of this
algorithm (there is also QEPCAD [147] for example), and this version has the advantage
of only focusing on producing a CAD (and does not perform quantifier elimination
for instance).

The CAD implementation in Axiom can return several kinds of results, some of which
are of interest for our test procedure. One of them is the list of regions composing
the CAD and which is also supposed to be A-invariant, where A is the set of initial
polynomials given as inputs. Contrary to the CAD described in the example (3.3), a
region is not described as a subset of E, but the CAD routine only returns a sample
point of this region. If we suppose that the returned result is correct, this is not
problematic when verifying formulas as the polynomials of A are supposed to have
the same sign all over the region and it is therefore sufficient to verify the formulas
for one sample point of this region. It should be noted that the components of these
sample points are algebraic numbers, and they may be either rational or not. In
the latter case, we cannot get a value of them (only an approximation), and specific
operations are needed to handle them. Again, this is actually not problematic as we
ask Axiom to perform these operations when required (typically when we need to
compute the sign of a polynomial for a given sample point). The presence of algebraic
numbers in the sample points is not surprising and occurs in the base phase of the
CAD algorithm in particular. In this phase, the decomposition of E! consists of the
roots of the input polynomials, one sample point between two successive roots, as
well as a lower bound and an upper bound of this set of points. If it seems possible to
choose rational points for the sample points and the lower and upper bounds, it is not
always the case for the roots of input polynomials (for instance, the golden ratio ¢ is

3.2 CERTIFICATION OF AUTOMATED PROOFS

the root of x> — x — 1 and is not rational). Another result returned by the CAD routine
of Axiom is the list of signs of input polynomials for each region, i.e. computed for
each sample point (thanks to this result, it is not necessary to ask Axiom to compute
the input polynomials applied to the several sample points).

The two lists returned by the CAD routine allow us to build a treelike structure
which is very appropriate for verifying first-order formulas. The structure of tree
consists in decomposing each component of the sample points, which are embedded
in the nodes, and in storing the corresponding signs in the leafs. Thus, a tree is either
a leaf containing a list of signs for the input polynomials, or a node containing a
component i and a list s of trees, such that for each component j of each tree of s, there
exists a sample point with components i and j. The tree is built in such a way that a
node with a given component is unique. The order of the component decomposition is
the same as the order of the quantifiers occurring in the formula to be verified. Thus,
a tree is always associated with a formula, whose it is intended to help verify the
validity. From such a tree, verifying a quantified formula is actually straightforward:
a universal quantifier over a component implies to browse all the branches leading
to the level of this component and to verify the formula for each branch (once the
quantifiers have been eliminated), whereas an existential quantifier implies to find one
branch verifying the formula.

Let us consider the previous example of the A-invariant CAD of E2, where A C I
is the set {A1(x,y)} = {xy}. In this example, the CAD routine of Axiom returns the
two following lists (respectively the list of sample points and the list of signs):

{(=1,-1),(0,-1),(1,-1),(0,0),(=1,1),(0,1),(1,1)}
{1,0,—1,0,—1,0,1}

where 1, 0 and —1 means respectively positive, zero and negative in the list of signs.

Let us now verify the formula 3x.Vy.A;(x,y) = 0, for instance. From this formula
(from the order of the quantified variables actually), it is possible to build a tree
according to the rules introduced above as shown in Figure 1. From this tree, we can
remark that the second branch leading to the node where x = 0 seems to work as
every branch starting from this node leads to a leaf where A;(x,y) = 0 whatever the
value of y. This formula is therefore valid.

The implementation of this test procedure consists of about 300 lines of ML code.
As perspectives, we consider to use a more standard format to exchange data between
Focal and Axiom. For example, OpenMath [145] could be a suitable solution, as some
OpenMath functionalities are already available both in Focal and Axiom (even if not
actually available in standard versions). In addition, another perspective should
consist in increasing the development of the theory of RCFs in Focal. In particular, the
preliminary implementation of real closure should be completed in order to handle
effective RCFs.

3.2 CERTIFICATION OF AUTOMATED PROOFS

Automated Theorem Provers (ATPs) and more generally automated tools aim to
provide proofs or results in a fully automatic way when possible. However, the
question is: what degree of confidence are we ready to give to these proofs or results?

29

30

AUTOMATING

Figure 1.: A-Invariant CAD of E2, where A = {xy} and with list of signs

This question is actually even more critical when we know that most of the time these
systems or tools only produce results and at best some traces intended to justify their
deductions or computations. In a safety or security context, the use of such tools is
clearly unsatisfactory, as the results are provided without any guarantee. The two
following contributions intend to mitigate this lack of confidence by proposing, in
addition to the results provided by a given tool, to build objects justifying these results
and that can be verified independently from the tool. The first contribution deals with
the proofs produced by the Zenon automated theorem prover, and which are translated
into Coq proofs [129] for checking. The second contribution consists in validating
supplementary rules involved in applications developed using the B method [1] by
means of Zenon proofs, which are translated back to B proofs.

3.2.1 Validation of Zenon Proofs

Contribution with the assistance of D. Doligez.
CPR team, CEDRIC (CNAM), Paris (France), 2003-2004.
Published in [24] (see Sec. D.4 of Appx. D).

As could be expected, ATPs should be suitable companions for formal systems, such
as interactive theorem provers for example, whose aim is to achieve checkable proofs
of theorems. However, most of these systems are more concerned by proving more
theorems in a finite and especially reasonable time than building the formal proofs
of theorems for which they guess a solution. Fortunately, most of them also produce
traces, which can be potentially exploited to build the corresponding formal proofs.
This is more or less feasible, as these traces are in general not much documented.
Over the past ten years, some experiments were conducted to increase the integration
of ATPs into systems specialized in formal and mechanized proofs, such as between
Gandalf and HOL [82], between Otter and ACL2 [103], between Bliksem and Coq [22],
or between E, SPASS, Vampire and Isabelle [107]. In this contribution, we propose a
similar approach with the Zenon first-order ATP [24] (see Section D.4 of Appendix D),
whose proofs can be translated into Coq proofs [129]. Compared to the experiments
mentioned above, this approach is actually not as similar as could be expected, since

3.2 CERTIFICATION OF AUTOMATED PROOFS

the generated Coq proofs are not intended to be used in Coq but are only produced to
be checked by Coq, which is seen as a proof checker. This can be explained by the fact
that Zenon is the reasoning support mechanism of the Focal environment [13, 132] (see
Appendix A), which is able to produce Coq specifications for certification in particular.
In the compilation scheme of Focal, Zenon is involved between the specification level
and the generated Coq implementation, where it helps the user find his/her proofs
and produces Coq proofs which are reinserted in the Coq specifications generated by
the compiler and fully verified by Coq. This final verification by Coq is a guarantee of
soundness both for Zenon and the Focal compiler.

The Zenon ATP

The Zenon ATP, developed by D. Doligez, deals with first order classical logic (with
equality), and is based on the tableau method. Even though, these days, the tableau
method is generally considered as not very efficient (compared to resolution, for
example), it has the advantage of being very appropriate for building formal proofs. In
this way, Zenon has a low-level format of proofs, called LLproof (see [24] and Section D.4
of Appendix D), which is very close to a sequent calculus. From LLproof proofs, Zenon
can directly produce proofs for Coq (it could be easily done for other proof assistants).
The search method of Zenon, called MLproof, relies on inference rules described in [24]
(see Section D.4 of Appendix D) and which are applied with the usual tableau method:
starting from the negation of the goal, apply the rules in top-down fashion to build a
tree. When all branches are closed (i.e. ending with the application of a closure rule),
the tree is closed and we have a proof of the goal.

The search method of Zenon has some specific features. One of them is to handle
the § rules with Hilbert’s e-operator [81, 97] rather than using Skolemization. While
most of the ATPs use Skolemization rather than e-terms (typically because Skolem
terms are handled like usual terms of the object language, while e-terms are new
terms which extend the object language), this approach provides some benefits though.
For example, e-terms lead to exponentially speed-up (and probably non-elementary
speed-up) w.r.t. some sophisticated Skolemization rules [71], such as 5t [16] for
instance. This is explained by the fact that e-terms are strictly related to the formulas
which introduce them, while Skolem terms are generally unrelated to the formulas that
generate them. In this way, e-terms allow us to automatically discover shorter proofs
which might rely on relationships between Skolem terms. Shorter proofs are a decisive
argument for adopting such an approach when eliminating existential quantifiers,
since Zenon proofs are intended to be verified by Coq and this verification must remain
feasible in terms of size of proofs.

Another specificity of Zenon is its non-destructive framework. Typically, metavari-
ables (often named free variables in tableau-related literature), which are introduced
when dealing with universally quantified formulas (or negations of existentially quanti-
tied formulas), are never substituted. They are used to trigger potential contradictions,
and when a contradiction has been identified, the corresponding instantiation rules
are used but the metavariables remain available (providing as many instantiations as
needed). Thus, a closed MLproof tree may still contain metavariables, but they can be
removed by pruning (see below).

31

32

AUTOMATING

A last specific feature of Zenon is the opportunity of minimizing the size of the
search tree by pruning (we can actually also minimize this size by providing a suitable
order over the rules to be applied, but this is quite usual in tableau-like methods). The
pruning works as follows. When a branching node N has a closed subtree as one of
its branches B, we can examine this closed subtree to determine which formulas are
useful. If the formula introduced by N in B is not in the set of useful formulas, we can
remove N and graft the subtree in its place because the subtree is a valid refutation of
B without N. A formula is said to be useful in a subtree if it is one of the formulas
appearing in the hypotheses (the upper side) of a rule application in that subtree.
As said previously, pruning can be performed to remove metavariables in particular
(when all the instantiations have been found in a given subtree). It should be noted
that pruning is applied during the proof search (and not only when the proof tree
is closed), and may reduce the branching factor of the search tree, which results in
shorter proofs and a significant speed-up.

Generation of Coq Proofs

The generation of Coq proofs from Zenon proofs is carried out from the LLproof format
mentioned previously. From a theoretical point of view, this translation ensures the
soundness of the LLproof formalism (w.r.t. a known theory), while from a practical
point of view, this provides a (local) guarantee of correctness regarding Zenon’s
implementation. But especially, in the context of the Focal system [13, 132] (see
Appendix A), this allows us to produce homogeneous Coq code (where the Coq proofs
built by Zenon are reinserted in the Coq specifications generated by the Focal compiler),
that can be fully verified by Cogq.

This translation into Coq proofs is not straightforward for some reasons inherent to
the underlying theory of Coq, but also to Coq itself. One of them is that the theory
of Coq is based on an intuitionistic logic, i.e. without the excluded middle, whereas
LLproof is purely classical. To adapt the theory of Coq to LLproof, we have to add the
excluded middle and the resulting theory is still consistent. But Coq does not provide
a genuine classical mode (even if the classical library is loaded), i.e. with a classical
sequent allowing several propositions on the right hand side, so that proofs must still
be completed using an intuitionistic sequent (with only one proposition to the right
hand side) and the excluded middle must be added as an axiom. Such a system does
not correspond to Gentzen’s LK sequent calculus, which is normally used when doing
classical proofs, but rather to Gentzen’s LJ sequent calculus provided with an explicit
excluded middle rule. From a practical point of view, doing proofs in this system is
more difficult than in LK (where the right contraction rule is a good shortcut), but in
our case this has little effect because all our proofs are produced automatically. Beyond
predicate calculus in general, Zenon also considers equality as a special predicate and
uses specific rules to deal with it. Thus, to translate proofs with equality correctly, we
have to extend the theory of LJ with equational logic rules. We called this theory LJeq
(see the rules in [24] and Section D.4 of Appendix D). Thus, we can prove that every
sequent provable in LLproof has a proof in Lleq.

As for the implementation, in order to factorize proofs and especially to minimize
the size of the produced proofs, the idea is to prove a lemma for each translated rule.

3.2 CERTIFICATION OF AUTOMATED PROOFS

Thus, a generated Coq proof is simply a sequence of applications of these lemmas. The
proofs are not only quite compact, but also quite efficient to be checked. For instance,
for the = A rule of LLproof (see the rules in [24] and Section D.4 of Appendix D), the
associated Coq lemma is the following;:

Lemma zenon_notand : forall P Q : Prop,
(~P — False) —» (~Q— False) — (~(P N Q) — False).

As an example of Coq proof produced by Zenon and involving the previous lemma,
let us consider the proof of =(P A Q) = =PV —Q, where P and Q are two propositional
variables. For this proof, Zenon is able to generate a Coq proof script as follows:

Parameters P Q : Prop.
Lemma de_morgan : ~(P N Q) — ~P V ~Q.

Proof.
apply NNPP. intro G.
apply (notimply_s _ _ G). zenon_intro Hz. zenon_intro Hi.
apply (notor_s _ _ H1). zenon_intro Hgq. zenon_intro H3.

apply H3. zenon_intro Hs.
apply H4. zenon_intro H6.
apply (notand_s _ _ Hz2); [zenon_intro H8 | zenon_intro Hy].
exact (H8 Ho).
exact (Hy Hs).
Qed.

where NNPP is the excluded middle, rule_s (where rule is notimply, notor, etc) a
definition which allows us to partially apply the corresponding lemma zenon_rule
providing the arguments at any position (not only beginning by the leftmost position),
and zenon_intro a macro tactic to introduce (in the context) hypotheses with possibly
fresh names if the provided names are already used.

In this implementation, we have to be aware of some difficulties. One of them is that
we plug first order logic, which is a priori untyped, into a typed calculus. To deal with
this problem, we consider that we have a mono-sorted first order logic, of sort U, and
we provide types to variables, constants, predicates and functions explicitly (the type
inference offered by Coq does not always allow it to guess these types). Obviously,
this must be done only when dealing with purely first order propositions, but can
be avoided with propositions coming from Coq or Focal, which are possible inputs
for Zenon, since these systems are strongly typed and Zenon is able to keep this type
information (this is possible since Zenon works in a non-destructive way, see above); in
this case, we generally have a multi-sorted first order logic. Another difficulty is that
mono/multi-sorted first order logic implicitly supposes that each sort is nonempty,
while types may be not inhabited in Coq. This problem is fixed by systematically
skolemizing the theory and considering at least one element for each sort, e.g. E for U.

3.2.2 Validation of B Proofs from Zenon

Contribution in collaboration with C. Dubois
and M. Jacquel (PhD student; see Subsec.C.1.3 of Appx. C).
CPR team, CEDRIC (CNAM), Paris (France), 2010.

33

34

AUTOMATING

This contribution is quite recent and work in progress. This is the fruit of a
collaboration with Siemens Transportation Systems (STS), formerly Matra Transport
International (MTI), which is the world leader in the domain of automated urban
transport. Due to the critical nature of the systems developed by STS, their production
line heavily relies on formal methods. In particular, they have been making an
intensive use of the B method [1] for more than 15 years, and have been participating
(together with RATP, Alstom, SNCF, and INRETS) to the development of the Atelier B
(by Steria, and later by ClearSy), which is the corresponding industrial tool. The use
of such method is spectacular when in November 1997, the Meteor metro line (now
line 14), deployed by MT], is launched in Paris, as this metro line is the first automated
line, which also accepts “manual” trains, but especially because 80% of the safety
software was developed with the B method. Since then, one of the main goals of the
successive research and development teams at MTI and later at STS was to increase
the degree of automation in the use of the Atelier B in particular.

The B method [1] is a collection of mathematically based techniques for the specifi-
cation, design and implementation of software components. Systems are modeled as a
collection of interdependent abstract machines. An abstract machine comprises a state
together with operations on that state. In a specification and a design of an abstract
machine, the state is modeled using an ad-hoc first-order set-theoretical language
(sets, relations, functions, sequences, etc). The operations are modelled using pre and
post-conditions (expressed using generalized substitutions). In an implementation of
an abstract machine, the state is again modeled using a set-theoretical model, but this
time we already have an implementation for the model. The operations are described
using a pseudo-programming notation that is a subset of the set-theoretical language
introduced above. The B method also prescribes how to check the specification for
consistency (preservation of invariant properties), and how to check designs and
implementations for correctness (correctness of data refinement and correctness of
algorithmic refinement). These checks produce proof obligations, and the Atelier B
provides in particular a tool, called PP, which is an ATP intended to help the user
discharge a maximum of his/her proof obligations.

The PP ATP cannot deal with all the proof obligations, and the idea developed
by STS is to add these unproven proof obligations as derived rules (which can be
therefore used afterwards) and to validate them by other means. This validation is
performed thanks to an external prover, namely Coq [129]. More precisely, a deep
embedding of the B theory, called BCoq [20], has been realized, and each rule to be
validated is translated in this reified version of B. The proof of a derived rule is then
carried out using Coq and especially the reified type corresponding to B proofs. Once
the proof completed, the derived rule is considered as validated. The advantage of a
deep embedding is that the logic of Coq does not “contaminate” the B proofs, which
are genuine proofs of the B theory. However, a drawback is that we cannot benefit
from the automation of Coq, and each automation must be written from scratch. The
present contribution aims to mitigate this drawback by plugging some external ATPs
in order to deal with these proofs. Thus, some experiments have been conducted with
Zenon [24] (see Section D.4 of Appendix D), E [130], and SPASS [150]. Nevertheless,
directly tackling reified proofs with these ATPs quickly appeared unsatisfactory, as
the encoding of B theory clearly adds an additional complexity in the proof search.

3.2 CERTIFICATION OF AUTOMATED PROOFS

Thus, an alternative approach is to unreify the rules to be validated and to launch
the ATPs on them. Once a proof is found for a given rule, the proof is then rereified,
so that we obtain a genuine reified B proof. This experiment is currently in progress
using Zenon, which appeared as the most appropriate ATP for this work. In fact, Zenon
is able to prove almost all the rules we want to deal with, and what is more, the Coq
output of Zenon (see Subsection 3.2.1) is quite suitable when rereifying the proofs of
the derived rules.

35

COMMUNICATING

"Programs must be written for people to read, and only incidentally for
machines to execute."

Harold Abelson and Gerald |. Sussman.
Structure and Interpretation of Computer Programs.
The MIT Press, July 1996.

This chapter aims to deal with the notion of communication between proof assistants
and their users. The word “users” must be considered in a broad sense here, as it
concerns not only developers writing specifications in proof assistants, but also people
who analyze and evaluate developments, such as people in charge to assert that a
given development is in accordance with a given regulation for example. This notion
of communication takes on several aspects related to the way of writing specifications,
the way of producing documentation, and also the way of compiling specifications.
In particular, we have to make sure that some features can be guaranteed, such as
readability, maintainability, documentation, and traceability for instance, which all of
them are important components of dependability in system and software engineering.
In the following, these several aspects and features of communication between proof
assistants and users are highlighted through three contributions by the author. The
tirst one is upstream of the proof assistant, as it consists of a new proof language,
developed in the context of the Coq proof assistant [129]. This proof language is
intended to be independent of a given proof style, and therefore allows the user to
develop proofs in procedural, declarative and proof-term based styles. Due to lack of
space and as this contribution is actually more former than the two following ones, it
is described in Section B.3 of Appendix B, in which we present some perspectives re-
garding the next proof languages, such as L. The second contribution is completely
downstream of the proof assistant, and proposes an automatic transformation of Focal
specifications [13, 132] (see Appendix A) to UML class diagrams [144] for documen-
tation purposes. This work lies within the framework of the EDEMOI project [131]
introduced in Section 2.1 of Chapter 2. Finally, the third contribution is somewhere
between the two other contributions, as it aims to elaborate a compilation scheme for
Focal based on modules, which is supposed to be an alternative to the current scheme
using records. This new compilation model has the advantage of providing a higher
level view of compiled specifications supplying in particular traceability.

37

38

COMMUNICATING

4.1 FROM FOCAL SPECIFICATIONS TO UML MODELS

Contribution in collaboration with V. Viguié Donzeau-Gouge
and J.-F. Etienne (PhD student; see Subsec.C.1.1 of Appx. C).
CPR team, CEDRIC (CNAM), Paris (France), 2004-2008.
Published in [57, 59] (see Sec. D.5 of Appx. D).

This contribution lies within the framework of the EDEMOI project [131], introduced
in Section 2.1 of Chapter 2 and which aims to integrate and apply several requirements
engineering and formal methods techniques to analyze regulations in the domain of
airport security. In the context of this project, several formalizations of different airport
security regulations were developed in particular using the Focal environment [13,
132] (see Section 2.1 of Chapter 2). The objective of the present contribution is to
also provide documentation for these formalizations by means of an automatic tool
implemented as an extension of Focal and able to produce UML models [144] from
Focal specifications.

4.1.1 The Need for Documentation

Even though formal methods offer a systematic approach for verification, the validation
process still relies on a high degree of interaction between the various stake-holders
(developers, customers, end-users, certification authorities, etc) involved in a critical
project. In addition, the use of formal methods requires a certain level of expertise
in mathematics, which usually hinders communication. In fact, the mathematical
notations used are often too obscure for inexperienced users to properly understand
the exact meaning. As a result, the validation of requirements is difficultly achievable.
This may even jeopardize the entire project as misinterpretations or specification errors
may lead to the validation of a totally wrong implementation.

A widely adopted solution to these problems is the integration of formal and
graphical specification. In general, the use of graphical notations is quite useful when
interacting with end-users. In fact, these tend to be more intuitive and are easier to
grasp than their formal (or textual) counterparts. During the last few years, UML [144]
has emerged as a standard in industry for modeling software systems. It provides
a set of graphical constructs, which enables the modeling of systems in an object-
oriented style. Currently, it is supported by a wide variety of tools, ranging from
analysis, testing, simulation to code generation and transformation. Interoperability
between these tools is generally achieved by exporting the UML models using the XMl
interchange format [143].

There have been several researches devoted to establishing the link between UML
and formal methods. One of the approaches that has been largely studied in this
domain is the translation of UML diagrams into formal specifications [89, 91, 92, 64],
which attempts to benefit from the formal methods tools and techniques while still
having control over the UML-based industrial practice. The converse approach [84, 83]
is here considered to generate UML diagrams as graphical documentations for Focal
specifications [13, 132] (see Appendix A). There are also some work [68] that stress
on the seamless integration of formal notation and UML, whereby the purpose is a

4.1 FROM FOCAL SPECIFICATIONS TO UML MODELS

development environment that facilitates the translation in both directions. We do
not consider such issue for the time being, but believe that it plays an important role
in the validation process: graphical models produced from the analysis phase and
validated by certification authorities; formal models generated from the graphical ones
and completed for verification; anomalies detected in formal models propagated back
to graphical models for discussion with certification authorities.

As said previously, the main motivation for this work lies within the framework of
the EDEMOI project [131], and in the context of this project, we used Focal to realize
the formal models of two regulations, namely the international standard Annex 17
and the European directive Doc 2320 [54, 56] (see Section 2.1 of Chapter 2). Within
this project, the purpose of the UML diagrams is two-fold. First, to provide a graphical
documentation of the formal models produced for developers, thus establishing a
common understanding of what is being formalized and analyzed. Second, to generate
higher-level views of the formal models that would be more appealing to certification
authorities.

For our concern, the choice of UML as a graphical notation mainly resides in the
fact that most of the Focal design features can seamlessly be represented in UML. One
could argue that the creation of a domain specific language exclusively for Focal would
be a better approach, as it avoids us from having to deal with the intricacies of the
UML semantics. The use of text-to-model tools [72], such as xText or TCS, generally
facilitates such process, whereby the grammar of the target language is taken as input
and the corresponding metamodel, parser and editor is generated as output. However,
regardless of these facilities, we still have to develop a graphical concrete syntax for
each concept. Moreover, the corresponding semantics might be intuitive to developers
but not necessarily to end-users or certification authorities (which is our long-term
objective). For example, from the Focal compiler we do have the possibility to generate
inheritance and dependency graphs. Nevertheless, these graphs are generally intended
for developers and mainly convey information extracted from the type inference and
dependencies analysis performed by the compiler. Finally, the choice for UML also
allows us to have access to a wide variety of tools ranging from analysis to code
generation and transformation. For instance, the UML models produced can serve to
map Focal specifications to other object-oriented languages, i.e. Java or C#.

4.1.2 Profile and Transformation Rules

The transformation of Focal specifications to UML models consists of three parts: a
formal description for a subset of the UML 2.1 static structure constructs; a dedicated
profile extending the UML metamodel in order to cater for the semantic specificities of
the Focal language; a set of transformation rules based on the UML profile obtained. It
should be noted that this transformation is fully formalized, so that it is possible to
prove and ensure its correctness.

The UML syntax we consider is a subset of the UML 2.1 static structure con-
structs [144] used as a means to provide a graphical documentation for Focal speci-
fications. We mainly focus on the basic constructs necessary to represent the notion
of species and collection. Normally, the syntax and semantics of each UML modeling

39

40

COMMUNICATING

construct are described in the form of a metamodel. The syntax is specified using class
diagrams, while the semantics are well-formedness rules expressed in a combination of
OCL [142] and English. In order to devise a formal framework for our transformation,
we proposed in [59] an abstract syntax for a subset of the UML 2.1 static structure con-
structs. The syntax was mainly derived from the UML 2.1/XMI schema [143] to reflect
as much as possible our implementation. In [57] (see Section D.5 of Appendix D),
we present a new syntax that hides some of the complexities inherent to the UML
metamodel and thus less dependent on the XMI format. This not only allows us to
increase the readability of our transformation rules but also to provide an appropriate
means to facilitate reasoning.

An alternative approach can consist in making use of a text-to-model tool [72],
e.g. xText or TCS, to obtain a metamodel of the Focal specification language instead
of defining an abstract syntax for UML. The automatic transformation from Focal to
UML may then be realized at a metamodel level through the use of a model-to-model
transformation language [85], such as ATL or QVT. Nevertheless, even though such an
approach can be considered during the implementation phase, it does not allow us to
prove the soundness of our transformation.

In order to properly specify, visualize and document Focal models using UML nota-
tions, there is also a need to extend the default UML metamodel as defined in [144] to
cater for the semantic specificities of the Focal specification language. The necessary
extensions are realized via the creation of a profile, where appropriate stereotypes are
defined to encode the semantics of each Focal construct in the form of appropriate OCL
constraints [142]. These stereotypes are namely «Species», «Collection», «FocalType»,
«Method», «In», «Is», «ParameterizedInheritance», «Inheritance» and «Implements».
To validate our transformation, we also provided a complete formalization of the
semantics relative to the template binding construct via the introduction of inter-
mediate stereotypes declared as required (i.e. mandatory when the corresponding
profile is applied). For this purpose, we based ourselves on the OCL formalization
realized by [30], which we extended to handle nested bound classes and inherited
members. Thus, the syntax introduced previously is slightly extended to reflect these
new stereotypes (see [57] and Section D.5 of Appendix D).

From the dedicated UML profile introduced above, we can already have an insight
of how the UML class constructs can be used to model a Focal specification. However,
despite their similarities, Focal species and UML classes are based on two different
concepts. In Focal, the functions defined in a species are intended to manipulate
entities of a given representation, which are static items having a unique value. Hence,
we model a species as an abstract factory class (stereotyped with «Species»), which
defines an interface for manipulating immutable value objects of a given type. More
precisely, a part of the transformation rules is described in [57] (see Section D.5 of
Appendix D), while all the rules are presented in [66]. In the latter presentation, in the
first place, it is shown how a Focal species is translated into a UML class. Based on the
formal syntax of UML and extended as explained above, the transformation rules are
given according to the order in which each component of a UML class is specified. In
the second place, it is shown how these rules are modified to consider the specificities
relative to the generation of a UML class from a Focal collection. It should be noted
that our transformation captures every aspect of the Focal specification language.

4.1 FROM FOCAL SPECIFICATIONS TO UML MODELS

This transformation has been proved sound in the following way: firstly, by show-
ing that the structure of each well-typed species (or collection) is preserved when
transformed into UML, w.r.t. the Focal dedicated profile; secondly, by showing that
the transformation of a well-typed Focal specification results into a well-formed UML
model. This notion of soundness actually states that typing is preserved from Focal
to UML (even if the well-formedness rules are said to characterize the semantics of
UML). Another form of soundness, not considered here, would be to establish that the
semantics of Focal is also preserved by the transformation, which is equivalent to show
that there exists a model of the UML metamodel (together with the profile), for which
the well-formedness rules are correct and which is compatible with a model of Focal.

An implementation of the previous transformation has been developed and consists
of two parts. In the first part, we define a UML profile for the Focal specification
language through the use of the UML2 Eclipse plug-in. This plug-in provides an
implementation of the UML 2.1 metamodel and its integrated OCL checker allows
us to validate the constraints defined in our profile. The ability to specify statically
defined profiles also facilitates the definition of the operations and derived attributes
characterizing each stereotype constituting our profile. This step is essential as
it provides the necessary tool to validate the UML models to which our profile is
applied. In fact, each OCL constraint specified in our profile is parsed and evaluated
at runtime. This mechanism offers a convenient way to validate the soundness of our
transformation. The second part concerns the development of an XSLT stylesheet that
specifies the rules to transform a Focal specification generated in FocDoc format [99]
(an XML schema used by the compiler for documentation) into a UML model expressed
in the XMl interchange format [143].

4.1.3 Airport Security Regulations

To illustrate our transformation process, we consider a relatively concise example
extracted from the Focal formalization realized within the EDEMOI project [131], and
also described in [57] (see Section D.5 of Appendix D). This concerns the specification
established for cabin persons. In the Focal formalization, the corresponding species is
defined as follows:

species cabinPerson (cb is cabinBaggage) =

rep;

sig equal in self — self — bool;

sig identityVerified in self — bool;

sig cabinBaggage in self — cb;

property equal_reflexive: all x in self, 'equal (x, x);
end

It can be observed that cabinPerson is a parameterized species and its representation
is left undefined. We also assume that the representation of species cabinBaggage
is still abstract. To give an example of inheritance and show how the abstraction
of a concrete representation is handled during the transformation process, we also
introduce collection cabinPerson_col, which provides an implementation for species
cabinPerson:

41

42

COMMUNICATING

ChT : Class
Ch5elf : Class
#ls» Cb : Class == CabinBaggage<=CbT,ChSelf>
T : Class
T5elf : Class
“Speciess
= CabinPerson

Attribute equal_reflexive

Operation : |
cabinPerson_cb () : Cb el iy L=l £

makeSelf { x - T) : TSelf

getRep (x - TSelf) - T

+ equal () : TSelf -= TSelf -= Bool

+ identityVerified () : TSelf -= Bool

+ cabinBaggage () : TSelf -> ChSelf

«mplementss
ChT -» Int, Ch5elf -» Bag::5elf, Ckh -> Baqg,
T -» Pair<5tring,Pair<Bag::5elf,Boal> », TSelf -> CabinPerson_col::5elf

«Collections
= CabinPerson_col

Attribute
- uniquelnstance : CabinPerson_col

F— = Self

peration N

- CabinPerson.col () - rep : Pair<5trin AP"a?rb;éZ cSelf,Bools =

+ instance () : CahinFPerson_col R a. - 0. :
Operation

cahinPerson_ch () : Ch - Salf ()
makeSelf (x : Pair<53tring,Pair<Bag: Self,Bool> =) : Self

getRep (¥ Self) : Pair<5tring,Pair<Bag.:5elf,Bool> »

+ equal () : S5elf -» Self -= Bool

+ identityerified () : Self -»> Bool

+ cakbinBaggage () : Self -» Bag::Self

Figure 2.: CabinPerson Classes

collection cabinPerson_col implements cabinPerson (bag) =

rep = string = bag * bool;

let name (s in self) in string = #first (s);

let cabinBaggage (s in self) in bag = #first (#scnd (s));

let identityVerified (s in self) in bool = #scnd (#scnd (s));
end

where #first and #scnd are respectively the first and second projections of a pair.

In this collection, the representation is specified as a triple, with the functions name,
cabinBaggage and identityVerified defined accordingly. In the “implements” clause,
species cabinPerson is instantiated with bag, which is a collection derived from cabin-
Baggage.

By applying the rules of our transformation described in [57] (see Section D.5 of
Appendix D) and more exhaustively in [66], the UML classes shown in Figure 2 (using
the corresponding graphical visualization) are obtained.

It should be noted that the generated UML classes are quite close to the initial Focal
specification. As a consequence, if such a translation appears quite appropriate for
developers when documenting their specifications, it is not suitable for evaluation
purposes because the produced UML models are too close to the implementation
and contain too many details in particular. Thus, in the future, we expect to use
the present transformation rules as a basis to generate higher-level views that would
be closer to conceptual models (similar to those produced at the preliminary stage

4.2 A MODULE-BASED MODEL FOR FOCAL

of the EDEMOI project [93]), and hence more pertinent for certification authorities
or more generally end-users (not only for developers). Another perspective is to
apply our transformation process to more concrete specifications (the formal models
realized within the framework of the EDEMOI project are quite abstract), such as the

standard library of Focal, which consists of a large formalization of computer algebra.

In this way, it would be possible to see whether the generated UML models are fairly
comprehensible and can be used for managing libraries. Finally, we aim to generate
more dynamic views of the formal models (sequence and state-transition diagrams)

through static analysis performed on the definitions involved in Focal specifications.

This evolution should be directly related to the integration of temporal mechanisms to
the Focal language, which might allow the expression of complex behavioral properties

and which have been told to be a desirable coming feature in Section 2.1 of Chapter 2.

4.2 A MODULE-BASED MODEL FOR FOCAL

Contribution in collaboration with

N. Bertaux (Master student; see Subsec.C.2.2 of Appx. C).
CPR team, CEDRIC (CNAM), Paris (France), 2008.
Published in [21].

This contribution also concerns the Focal environment [13, 132], and its compiler
more precisely. As said in Appendix A, Focal is equipped with a compiler producing
OCaml code [128] for execution and Coq code [129] for certification, and the objective
of this contribution is to propose a compilation scheme based on modules, which is
supposed to be an alternative to the current scheme using records and aims to provide
a higher level view of compiled specifications supplying in particular traceability.

4.2.1 High-Level Compilation Schemes

The rational behind the Focal language [13, 132] (see Appendix A) relies on the
intention of providing a language in which it is possible to write highly structured
specifications, and which is based on several paradigms, going from abstract data
types to object-oriented programing. To understand the motivations and especially
the foundations of Focal, we have actually to go back to the middle of 9o’s with the
informal discussions which took place within the BiP working group animated in
particular by T. Hardin, V. Viguié Donzeau-Gouge and J. R. Abrial. From this group
composed of experts both in Coq [129] and B [1] emanated the idea of a language
with more structured specifications than the rather “flat” formalizations made in Coq
and with a notion of incremental development in the idea of B’s refinement. Shortly
afterwards, the Focal project (initially Foc project) was started in 1997 by T. Hardin
and R. Rioboo with, in particular, an initial case study, which was consisting in
implementing a library of computer algebra. For this purpose, a new language was
designed, in which it is possible to build applications step by step, going from abstract
specifications, called species, to concrete implementations, called collections. These
different structures are combined using inheritance and parameterization, inspired by

43

44

COMMUNICATING

object-oriented programming. Moreover, each of these structures is equipped with a
carrier set, providing a typical algebraic specification flavor.

Basically, the underlying model of Focal, as presented in [77], consists of a class built
over a data type and which provides functionalities over this data type in an approach
similar to that of abstract data types, but with all the power of multiple inheritance
and redefinition. This is exactly how it is encoded in the experiment described
above and which consists in producing UML models from Focal specifications (see
Subsection 4.1). The elaboration of such a model has allowed S. Boulmé to develop a
formal specification of it in Coq [26], which has shown in particular how the logical
consistency could be ensured in this model. V. Prevosto thereafter developed a
compiler for this language [111], able to produce OCaml code [128] for execution and
Coq code [129] for certification. In the first versions of the compiler, the implementation
was using the object-oriented features of OCaml to produce the computational part
of Focal specifications, while the Coq compilation was relying on an encoding using
records (since Coq is not object-oriented). However, if the OCaml compilation was
having the advantage of sticking to the initial model of Focal, the presence of two
different compilation models for OCaml and Coq was quite unsatisfactory, as the code
certified in Coq was actually not the code to be executed in OCaml. To palliate this
problem of distance between execution and certification, a common compilation model
based exclusively on records [112] was thereafter implemented and is currently the
model used by the latest version of the compiler [133].

As can be noticed, the compilation scheme of Focal is of high level as it actually
relies on high level target languages. Nevertheless, the data structures used for the
compilation, namely records, are of low level and tend to break the structure of Focal
specifications. Thus, to keep the highly structured nature of Focal specifications, we
propose, in this contribution, a model of Focal relying on modules, which is supposed
to be an alternative to the actual compiler using records, and which can be applied
both to OCaml and Coq since these two languages offer a module system. As modules
are higher level structures than records, such a compilation allows us to preserve, at
a certain extent, the structure of Focal specifications in the compiled code and then
provides traceability w.r.t. these specifications, which is not possible with the model
based on records where the notion of inheritance disappears and where specifications
must be flattened.

4.2.2 Module-Based Compilation

In the following, we present an overview of the module-based compilation scheme
from Focal to OCaml and Coq through a small example. In particular, we focus on the
compilation of the representation of a species and a simple case of inheritance. For
more complex examples and for an exhaustive description of this compilation scheme,
the reader is invited to refer to [21]. The considered example concerns the compilation
of the predefined species setoid (and by extension of the species basic_object, which is a
root species for Focal specifications), which represents a non-empty set supplied with
a decidable equality.

4.2 A MODULE-BASED MODEL FOR FOCAL

The basic idea of the module-based compilation for OCaml and Coq is that a species
corresponds to a functor parameterized by some attributes still abstract and a collection
corresponds to a module resulting from the application of a functor representing the
implemented species to modules representing the actual parameters provided to the
species. We suppose that the reader is familiar with OCaml and Coq, and with their
respective module systems in particular; otherwise, the reader can refer to [128, 129]
for more information regarding both systems.

In Focal, every specification usually starts with the following predefined root species
basic_object, which provides an abstract representation in particular:

species basic_object =

rep;

let print (x in self) = "<abst>";

let parse (x in string) in self = #foc_error ("not_parsable");
end

where #foc_error is the operator to signal exceptions.

To compile this species in OCaml using modules, we should first remark that in
OCaml, modules cannot be partially defined, contrary to Focal species where not
only representations can be abstract, but also functions or properties. To keep this
abstraction in OCaml, the idea is to create a functor parameterized by the attributes
still abstract (typically, representations and functions). Thus, the considered species is
compiled into the following functor Basic_object:

module type BASIC_OBJECT =

sig
type self
val print : self — string
val parse : string — self
end

module Basic_object (Abs : sig type self end)
BASIC_OBJECT with type self = Abs.self =

struct
type self = Abs.self
let print (x : self) = "<abst>"

let parse (x : string) : self = failwith "not_parsable”
end

In Coq, the module system offers a quite mixin-oriented approach, in the sense
that a module and even a module type may contain abstract and defined attributes
(typically, declarations and definitions, but also axioms and theorems). This approach
is probably one of the most appropriate to model the semantics of Focal and this
allows us to get rid of this notion of module including the abstract attributes (module
Abs in OCaml), and which appears as a parameter of the functor representing the
compiled species. The representation, if abstract, must still be a parameter, but does
not need to be included in the module signature representing the interface of the
species as required by OCaml (see module type BASIC_OBJECT), since we can use a

45

COMMUNICATING

parameterized module signature, which is a feature recently provided by Coq. The
Coq compilation is the following:

Module Type REP.
Parameter ¢t : Set.
End REP.

Module Type BASIC_OBJECT (Self : REP).
Parameter print : Self.t — string.
Parameter parse : string — Self.t.

End BASIC_OBJECT.

Module Basic_object (Self : REP) <: BASIC_OBJECT (Self).
Definition print (x : Self.t) : string := "<abst>".
Definition parse (x : string) : Self.t

foc_error Self.t "not_parsable".

End Basic_object.

where foc_error is a function encoding the corresponding exception operator.

In the following, we focus on the functor corresponding to the compiled species
(typically, Basic_object in the previous example), and we do not provide the module
signature representing the interface of this species (i.e. BASIC_OBJECT in the previous
example).

In Focal, the notion of non-empty set provided with a decidable equality is intro-
duced by species setoid, which inherits from species basic_object:

species setoid inherits basic_object =
sig equal in self — self — bool;
sig element in self;
let different (x, y) = #not_b (!equal (x, y));
property equal_reflexive : all x in self, !equal(x, x);
theorem same_is_not_different : all x y in self,

'different (x, y) < not (!equal (x, y))

proof: def !different;

end

where #not_b is the negation over type bool.

The OCaml compilation of this inheritance is made by means of the inclusion of
a module which results from the instantiation of the functor corresponding to the
inherited species. The actual parameter of this functor is a module containing the
attributes which are abstract in the inherited species and which may be either still
abstract or concrete in the sub-species. In our case, this module only includes the
representation, which is still abstract. The compilation is as follows:

module Setoid

(Abs : sig
type self
val equal : self — self — bool
val element : unit — self

end) : SETOID with type self = Abs.self =

4.2 A MODULE-BASED MODEL FOR FOCAL

struct
include Basic_object (struct type self = Abs.self end)
let equal = Abs.equal
let element = Abs.element
let different x y = not (equal x y)
end

The Coq compilation of this inheritance is rather similar and is also realized through
the inclusion of the module which corresponds to the instantiation of the functor
representing the inherited species. As seen previously, this instantiation only concerns
the representation. The compilation is the following:

Module Setoid (Self : REP) <: SETOID (Self).
Include Basic_object (Self).
Parameter equal : Self.t— Self.t— bool.

Parameter element : Self.t.
Definition different (x y : Self.t) : bool := negb (equal x y).
Axiom equal_reflexive : forall x : Self.t, Is_true (equal x x).

Theorem same_is_not_different : forall x y : Self.t,
Is_true (different x y) <> Is_true (negb (equal x y)).
Proof.
End Setoid.

The previous case of inheritance is actually quite simple, as there are few dependen-
cies. For example, in OCaml, the only dependency occurs in the inheritance module
(the module which is included), which depends on the actual module of abstractions
(the module containing the instantiations of the attributes of the inherited species pre-
viously abstract). However, some other dependencies may appear when we concretize
a function previously abstract using a function which is added in the considered
species, or when a function which is added in the considered species, depends on
a function coming from the inheritance. This new dependencies then imply mutual
dependencies between the module of inheritance, the actual module of abstractions,
and the module gathering the functions of the compiled species. In OCaml, this is han-
dled by means of a block of recursive modules. In addition, the inclusion mechanism
of OCaml (“include” expression) is replaced by a selective inclusion, as the module
of inheritance and the module of the functions of the compiled species may overlap.
This new inclusion mechanism also allows us to deal with multiple inheritance. This
manual inclusion is actually not problematic since it is intended to be automatically
generated; moreover, this inclusion is even preferable as each attribute of a species
appears explicitly in the module representing this species.

In Coq, the absence of the module of abstractions allows us to avoid the use of a
block of recursive modules. The compilation is made by means of a selective inclusion
of the module corresponding to the instantiation of the inheritance functor, and which
consists in only including inherited attributes which are not defined or redefined
in the compiled species. The attributes added in the compiled species are then also
included. As in OCaml, the generated code does not use the primitive inclusion of Coq.

Another difficulty appears when compiling late binding. In OCaml and in modules
in particular, function calls are statically linked. As a consequence, a redefinition

47

48

COMMUNICATING

implies that every function referring to this redefined function cannot be inherited as
it refers to the former definition of this function and not to the latter. To solve this
problem without having to repeat the code of every function referring to the redefined
function, we introduce the notion of function generator (this system is also used in
the model based on records [112]). A function generator is a function based on the
previous defined function where every reference to another function of the species
has been abstracted. The corresponding defined function is then obtained applying its
function generator to the actual functions of the species that have been abstracted in
the function generator. For each function requiring the use of a function generator, the
corresponding function generator is added to the module representing the compiled
species and can then be reused later by inheritance.

In Coq, the redefinition of a function poses the same problem with wider influences.
In the same way, we have to use function generators for defined functions using
a redefined function. However, the dependencies w.r.t. a redefined function also
concerns properties, whose statements as well as the proofs may depend on this
function. Therefore, we have to introduce the notion of property generator, which
actually consists of two generators: a statement generator and a proof generator (if
the property is a theorem). Similarly to function generators, these two generators
are functions which make an abstraction of the functions, but also of the properties,
respectively involved in the statement and the proof of a property. For proof generators,
the abstraction of a function is made only if the proof does not depend on the definition
of this function, as the proof is invalidated if this function is redefined. As in OCaml,
all the generators are included in the module representing the compiled species.

As can be seen, the thorny points of the above compilation essentially resides in
the compilation of the object-oriented features of Focal. This is not surprising as
we know that module and object paradigms are rather orthogonal. To deal with all
the potentially problematic cases, the compilation has been completely formalized
and can be found in [21]. This formalization tends to show that thanks to modules,
which are high level structures, this compilation scheme can preserve the structure
of Focal specifications and ensures a certain traceability. The next step is to develop
an implementation of this compilation scheme, which should allow us to assess the
feasibility of such an approach in practice. In addition, this work has allowed us
to compare the module systems of OCaml and Coq, and to show their respective
evolutions. In particular, since the first versions of modules in Coq [36], remarkable
improvements were carried out [116], such as the introduction of parameterized
module signatures or the possibility of using abstract attributes in modules and
module signatures. Some additional changes are being developed along with the
possibility of concretezing abstract attributes for example. All these improvements and
changes tend to significantly facilitate the compilation of Focal in Coq using modules,
even if we are still far from the Focal model described in [77].

CONCLUSION

5.1 ACHIEVEMENTS

In this document, we present different contributions which tend to propose several
improvements in the use of theorem proving along three well-identified lines of work.
The first line of work is structuring (see Chapter 2), which consists in focusing on
the way of building appropriately structured specifications, as it has obviously some
direct consequences on the way of certifying them for example. In this line of work,
we describe three contributions. In the framework of the EDEMOI project, the first
contribution consists of the formalization of airport security regulations using the Focal
environment. This experiment has allowed us to assess the appropriateness of the
design features of Focal applied to a real-world example, as well as the effectiveness
of Zenon, the automated reasoning support of Focal. Along the same lines of clearly
distinguishing specification from implementation as introduced by the Focal language,
we present a second contribution, which resides in an extraction procedure of func-
tional code from inductive relations and which has been implemented in the context
of the Coq proof assistant and the Focalize environment (the successor of Focal). The
third contribution highlights the consequences of highly structured specifications over
tools intended to support a theorem prover, with the elaboration of an information
retrieval procedure in proof libraries using type isomorphisms and implemented in
the framework of Coq. In particular, we show how the introduction of dependent
types involves major modifications of the corresponding theory of type isomorphisms
compared to the theory for CCCs or that for ML.

The second line of work developed in this document is automating (see Chapter 3),
which relies on the credo that a theorem prover must offer a suitable level of automa-
tion and/or appropriate means to enhance this automation. In this line of work, we
detail three contributions. The first contribution focuses on the way of increasing
the power of automation of a theorem prover with the introduction of an alternative
meta-language, which allows us to write not only small but also complex automation
routines in the context of Coq. The second contribution deals with some possible inter-
actions between deduction and computer algebra in a pure skeptical way (i.e. verifying
the soundness of the computations). In this contribution, three experiments have been
conducted. The first one consists of the development of an interface between Coq and
the Maple computer algebra system, which allows us to import into Coq computations
from Maple over fields. In a second experiment, this interface has been extended to
deal with computations of gcds over polynomials, in order to implement a quantifier

49

50

CONCLUSION

elimination procedure over algebraically closed fields in the framework of Coq. In
the continuity of the previous procedure, a third experiment consists in designing a
procedure for Focal to test the validity of first-order properties over real closed fields
using the computation of cylindrical algebraic decomposition performed by a routine
of the Axiom computer algebra system. Lastly, the third contribution proposes to adapt
the idea of skeptical computations to automated deduction with two studies related to
the Zenon automated theorem prover. The first study deals with the proofs generated
by Zenon, and which are translated into Coq proofs for checking, while the second
study consists in validating supplementary rules involved in applications developed
using the B method [1] by means of Zenon proofs, which are translated back to B
proofs.

Finally, the third line of work detailed in this document is communicating (see
Chapter 4), which aims to draw attention to several means of communicating between
theorem provers and end-users. This line of work consists of three contributions. The
tirst contribution deals with the input language of a theorem prover and presents a
language for Coq to describe proofs, which has the advantage to be style-independent
in the sense that it gathers the three well-identified proof styles, i.e. the procedural,
declarative and proof-term styles. Conversely, the second contribution focuses on
the output language of a theorem prover and proposes a transformation from Focal
specifications to UML models, which appears quite appropriate as a means of automatic
documentation and especially as a means of producing comprehensible documents for
end-users. In particular, in the context of the EDEMOI project, we can hopefully expect
that documents in UML are a good basis to converse with certification authorities.
The third and last contribution introduces another scheme of compilation for Focal,
which is based on the notion of modules and which is supposed to be an alternative
to the current scheme using records. This new compilation model has the advantage
of providing a higher level view of compiled specifications supplying in particular
traceability w.r.t. the initial Focal specifications.

5.2 PERSPECTIVES

In the previous chapters describing the three lines of work detailed in this document
(Chapters 2, 3 and 4), some perspectives in the short and medium terms have been al-
ready introduced. Here, we aim to present long term and more ambitious perspectives
by wondering what the next-generation theorem provers could look like and what
kind of features could be worth working on. This is obviously a challenge itself to
anticipate the future research directions of the community in the domain of theorem
proving, but the following perspectives can also be seen as trends in which the author
strongly believes.

The first set of perspectives is related to the development of the Focal environment,
since in the last decade, Focal has allowed us to focus on the importance of structuring
specifications (see Chapter 2). The formalization of airport security regulations in the
framework of the EDEMOI project [131] and described in Section 2.1 of Chapter 2 has
shown the appropriateness of the design features of Focal (as well as the reasoning
support ensured by Zenon), but it has also highlighted some limitations, which we have

5.2 PERSPECTIVES

to deal with if we want to make Focal evolve. Among these limitations, there is the
integration of temporal mechanisms to the language in order to allow the expression of
behavioral properties. These behavioral properties may be either properties involving
synchronization mechanisms, or properties where physical time occurs. To handle
time properties, we need to appeal to temporal logics, which can be seen as extensions
of classical logic (the basic logic of Focal), in order to formalize the required behavioral
properties. As a temporal logic for Focal, a possibility is to consider TLA [94] (Temporal
Logic of Actions), since recent experiments [32, 33] have been conducted in the
framework of TLA+ [96], in which Zenon is able to manage TLA proofs of safety
properties and produce Isabelle proofs [136] for checking.

To deal with time properties, a temporal logic is not enough. We must also be
able to produce code satisfying these properties. The very functional Focal code
allows us to do so, but appears not to be readable as there is no notion of internal
state. To remain in the Focal approach (i.e. as functional as possible to make the
activity of proving easier), we aim to experiment some reactive features, based on
the synchronous model. The synchronous approach [76] relies on an ideal model
where computations and communications are supposed to be instantaneous. In this
model, time is logically defined as a sequence of reactions to input signals. Thus, the
reaction of the system to its environment is supposed to be instantaneous. The main
advantage of this approach is that it is possible to specify deterministic behaviors even
in presence of parallelism and communications. This determinism can be preserved
from specification to implementation and allows us to perform formal verification,
which remains one of our main objectives in the Focal project. For the choice of a
reactive programming language for Focal, some languages like Lucid Synchrone [110]
or Reactive-ML [102] are quite good candidates to be investigated. The advantage of
considering these languages is that they rely on two different programming paradigms,
i.e. the data flow and control styles. This allows us to keep a possibility of choice. But
especially, these two languages can be compiled to OCaml, which allows us to focus on
the problem of compiling them to Coq. At a certain extent, this simplifies the design
of the compilation schemes for Focal.

Still in the context of the EDEMOI project, the basic design pattern of Focal appeared
a little inadequate. Even though parameterization provides a form of parametric and
bounded polymorphism, the absence of free subtyping hinders the factorization of
some security properties. Thus, a security property related to a species appearing
as a parameter must be reinstantiated for each sub-species of this species. If the
factorization is effective in the Focal specification, it is not the case in the compiled
code where the code of the instantiated species is duplicated for each instantiation.
To palliate this drawback, J.-F. Etienne proposed in his PhD thesis [66] the use of
explicit conversion functions between sub-species and super-species. However, he did
not thoroughly investigate the implications that this approach may have on concrete
implementations. Though this solution appears to be appropriate, it may nonetheless
leave space to specification errors, as we cannot always guarantee that a species is
indeed a proper subtype of a given super-species. Hence, the ultimate solution to
this problem might be to consider an enhancement of the Focal specification language
with improved subtyping capabilities. Another point related to this problem is the
specific use of the object-oriented features in Focal, where it is actually impossible to

51

52

CONCLUSION

use species and inheritance to build data types, as it is usually done in object-oriented
programming languages. This is not possible because Focal relies on the principle
that every species shares the same representation along the inheritance path. As a
consequence, very few design patterns coming from the community of object-oriented
programming can be applied. To deal with this problem, a solution would be to relax a
little the constraint over representations and to allow extensible representations. Thus,
a sub-species could not change the representation of its super-species, but just add
some type components to this representation. In this way, object-oriented data types
could be introduced, while a new algorithm of computation of dependencies should
be considered as all the theorems of the super-species depending on the representation
should be reproved (or at least completed).

Some other limitations have been underlined during the development of the certified
library of computer algebra by R. Rioboo (it was the initial case study of Focal). Among
others, there is the possibility of writing recursive species, which is currently not
allowed in Focal. For instance, the problem may occur when formalizing real closed
tields (required in the experiment described in Subsection 3.1.3 of Chapter 3). A
possible definition is the following: a real closed field is a field E s.t. there is a total
order on E making it an ordered field s.t. in this ordering, every positive element
of E is a square in E and any polynomial of odd degree with coefficients in E has
at least one root in E. This definition is recursive since to define E, we need to
consider polynomials with coefficients in E. This point is currently not solved, even
if a compilation to OCaml has been proposed. Another limitation emphasized by the
development of this library is the absence of invariants over representations. However,
in mathematics, this is frequently used when defining quotients over sets for example.
R. Rioboo proposes a solution in [113], but this solution is not primitive and it could
be worth supplying Focal with a built-in system of representation invariants. To do so,
a possibility could consist in using the concrete types with invariants studied in the
framework of the Quotient project [148], and implemented in a tool, called Moca [23],
able to generate construction functions for OCaml data types with invariants.

All the extensions proposed above have to be formally and semantically founded.
This could be done by integrating these extensions to the abstract model of Focal
proposed by S. Boulmé [26], and which is strongly inspired by contextual categories
introduced by J. Cartmell [31] and considered to axiomatize dependent records. Nev-
ertheless, this model is quite abstract and far from a concrete implementation of Focal.
To mitigate this problem, a more operational model of Focal has been elaborated by
S. Fechter [67], but this model essentially relies on formal models of object-oriented
programming languages and therefore only focuses on the computational behavior of
Focal specifications leaving properties and theorems uninterpreted. Thus, if we want to
formalize any extension of Focal, a preliminary work should consist in elaborating an
operational model able to also deal with properties and theorems. Once the semantics
of these extensions precised, an appropriate model of compilation will have to be
found and integrated to the compiler initially implemented by V. Prevosto [111] (and
re-implemented later under the name of Focalize by F. Pessaux). By appropriate, we
mean a model which is at least consistent and at best correct w.r.t. the semantics of
these extensions expressed in the operational model. To do so, an encoding of Focal
in a well-identified calculus, with polymorphism and dependent types in particular,

5.2 PERSPECTIVES

could be an option, as Focal would not only benefit from the properties (such as
consistency) of this calculus, but it would also allow us to precise the place of Focal in
the land of these calculi.

A second set of perspectives concerns the interactions of deduction and computer
algebra introduced in Section 3.1 of Chapter 3. Over the last 10 past years, the author
has been very implied in this domain with a progressive line of work. First, there
was the development of the Coq tactic “field” for dealing with equalities over fields.
Next, the author implemented an interface between Coq and Maple, which was able
to import Maple computations into Coq and to certify them by means of the “field”
tactic. This interface was extended afterwards to deal with computation of gcds over
polynomials in order to design a proof procedure for Coq over algebraically closed
tields. Finally, a test procedure for real closed fields was elaborated for Focal using a
CAD implementation in Axiom. In this succession of experiments, the author aimed
to keep a skeptical approach and deal with ever more complicated fields, going from
basic fields to real closed fields passing by algebraically closed fields. A natural
perspective for this work is to transform the test procedure for real closed fields
implemented as an interface between Focal and Axiom into a proof procedure for
Focal, which would certify the computation of CAD provided by Axiom. As said in
Subsection 3.1.3 of Chapter 3, the problem is difficult and is actually equivalent to
asking the following question: given a real closed field E and A a subset of I, is
it possible to verify that a given decomposition D of E” is an A-invariant CAD of
E"? This problem is undecidable in general (verifying that a collection of sets is a
decomposition of E" is still undecidable), but some results consisting in dealing with
specific dimensions (such as dimension 2, for instance), or related to the connexity of
regions could be exploited to find an appropriate notion of certificate. This experiment
should be a significant work and might require some new results about CAD. It should
also be noted that our approach remains skeptical (with an external computation), and
is therefore an alternative to similar but autarkic developments of CAD, such as [101].

53

THE FOCAL ENVIRONMENT

A.1 WHAT IS FOCAL?

To understand the motivations and especially the foundations of the Focal lan-
guage [13, 132], we have to go back to the middle of 9o’s with the informal discussions
which took place within the BiP working group animated in particular by T. Hardin,
V. Viguié Donzeau-Gouge and J. R. Abrial. From this group composed of experts
both in Coq [129] and B [1] emanated the idea of a language with more structured
specifications than the rather “flat” formalizations made in Coq and with a notion of
incremental development in the idea of B’s refinement. Moreover, it was important for
this new language to be strongly typed, probably in a slightly less powerful way than
in Coq, but in a more elaborated way than the set theory present in B.

The Focal project (initially Foc project) was started in 1997 by T. Hardin and R. Rioboo
with, in particular, the PhD thesis of S. Boulmé [26]. In this thesis, a new language was
designed, in which it is possible to build applications step by step, going from abstract
specifications, called species, to concrete implementations, called collections. These
different structures are combined using inheritance and parameterization, inspired by
object-oriented programming. Moreover, each of these structures is equipped with
a carrier set, providing a typical algebraic specification flavor. V. Prevosto thereafter
developed a compiler for this language [111], able to produce OCaml| code [128] for
execution, Coq code for certification, but also code for documentation [99]. D. Doligez
also provided a first-order automated theorem prover, called Zenon [24], which helps
the user to complete his/her proofs in Focal through a declarative-like proof language.
This automated theorem prover can produce pure Coq proofs, which are reinserted in
the Coq specifications generated by the Focal compiler and fully verified by Cogq.

As an initial case study, a certified Computer Algebra library (distributed with
the compiler as the standard library of Focal) was developed by R. Rioboo (with
significant efficiency results compared to existing Computer Algebra systems). Later,
other formalizations were carried out regarding airport security regulations [54, 56]
(see Chapter 2, Section 2.1) by J.-F. Etienne, V. Viguié Donzeau-Gouge and the author,
security policies [86] (Bell-LaPadula and more advanced models) by M. Jaume and
C. Morisset, and more recently, models of component-based systems in the framework
of the REVE project [149]. All these formalizations tend to show that Focal can be
considered as a general-purpose specification language, appropriate not only for
mathematics but also for real-world applications.

55

56

THE FOCAL ENVIRONMENT

A.2 SPECIFICATION: SPECIES

The first major notion of the Focal language [13, 132] is the structure of species, which
corresponds to the highest level of abstraction in a specification. A species can roughly
be seen as a list of attributes of three kinds:

e the carrier type, called representation, which is the type of the entities that are
manipulated by the functions of the species; the representation can be either
abstract or concrete;

e the functions, which denote the operations allowed on the entities of the repre-
sentation; the functions can be either definitions (when a body is provided) or
declarations (when only a type is given);

o the properties, that must be verified by any further implementation of the species;
the properties can be either simply properties (when only the proposition is given)
or theorems (when a proof is also provided).

The syntax of a species is the following:

species <name> =

rep [= <type>]; (x representation x)
sig <name> in <type >; (x declaration x)
let <name> = <body>; (% definition x)
property <name> : <prop >; (x property x)
theorem <name> : <prop> (x theorem x)
proof : <proof>;

end

where <name> is simply a given name, <type> a type expression (mainly typing
of core-ML without polymorphism but with concrete data types), <body> a function
body (mainly core-ML with conditional, pattern-matching and recursion), <prop> a
(first-order) proposition and <proof> a proof (expressed by means of a declarative
proof language). In the type language, the specific expression “self” refers to the type
of the representation and may be used everywhere except when defining a concrete
representation.

As said previously, species can be combined using (multiple) inheritance, which
works as expected. It is possible to define functions that were previously only declared
or to prove properties which had no provided proof. It is also possible to redefine
functions previously defined or to reprove properties already proved. However,
the representation cannot be redefined and functions as well as properties must
keep their respective types and propositions all along the inheritance path. Another
way of combining species is to use parameterization. Species can be parameterized
either by other species or by entities from species. If the parameter is a species, the
parameterized species only has access to the interface of this species, i.e. only its
abstract representation, its declarations and its properties. These two features can be
used simultaneously within the same species and complete the previous syntax given
above as follows:

A3 IMPLEMENTATION: COLLECTION

species <name> (<name> is <name>[(<pars >)], <name> in <name>, ...)
inherits <name>, <name> (<pars>), ... =
end

where <pars> is a list of <name>, which denotes the names used as effective parame-
ters. When the parameter is a species parameter declaration, the “is” keyword is used.
When it is an entity parameter declaration, the “in” keyword is used.

A.3 IMPLEMENTATION: COLLECTION

The other main notion of the Focal language is the structure of collection, which
corresponds to the implementation of a specification. A collection implements a
species in such a way that every attribute becomes concrete: the representation must be
concrete, functions must be defined and properties must be proved. If the implemented
species is parameterized, the collection must also provide implementations for these
parameters: either a collection if the parameter is a species or a given entity if the
parameter denotes an entity of a species. Moreover, a collection is seen (by the
other species and collections) through its corresponding interface; in particular, the
representation is an abstract data type and only the definitions of the collection are
able to manipulate the entities of this type. Finally, a collection is a terminal item
and cannot be extended or refined by inheritance. The syntax of a collection is the
following:

collection <name> implements <name> (<pars>) = ... end

A.4 CERTIFICATION: PROVING WITH ZENON

The certification of a Focal specification is ensured by the possibility of proving
properties. To do so, a first-order automated theorem prover (based on the tableau
method), called Zenon [24], helps us to complete the proofs. Basically, there are two
ways of building proofs with Zenon: the first one is to provide all the properties (proved
or not) and definitions needed by Zenon to build a proof automatically; the second one
is to introduce additional auxiliary lemmas (by means of a purely declarative proof
language) to help Zenon find a proof. In the first way, proofs are described as follows:

theorem <name> : <prop>
proof : by <props> def <defs >;

where <props> is a list of properties and <defs> a list of definitions.

The proof language of the second option is inspired by a proposition by L. Lam-
port [95], which is based on a practical and hierarchical structuring of proofs using
numeric labels for proof depth. The syntax is the following:

theorem <name> : <prop>

proof

<<level >><label > assume <hyps> prove <prop>
<<level >><label > qed [by <props> def <defs >];

57

58

THE FOCAL ENVIRONMENT

where <level> is a natural number, <label> a name and <hyps> a list of hypotheses
(of the form “<name> : <type> or <prop>"). The “assume ... prove” expression is
used to introduce a new goal to be proved (“assume” provides skolemization). The
proof of the new goal is detailed in sub-levels, whereby the numeric label is increased
accordingly. The “qed” expression closes a proof level, possibly with the help of some
properties/definitions provided by the user through the “by ... def” expression.

A.5 FURTHER INFORMATION

For additional information regarding Focal and its applications, the reader can refer
to [13, 132]. It should also be noted that a new version of the Focal compiler, called
Focalize, has been recently released and is available at [133].

FORMER CONTRIBUTIONS

This appendix presents three contributions by the author, which respectively lie within
the three lines of work considered in this document, i.e. structuring (Chapter 2),
automating (Chapter 3), and communicating (Chapter 4). These contributions are a
little more former than those described in the previous chapters, since they are mainly
based on the Master/PhD theses of the author. However, they are analyzed with
the benefit of hindsight, and some perspectives are proposed relying on the current
trends and the work realized since then. More precisely, the first contribution consists
in retrieving information, basically theorems, in proof libraries using types as keys
and up to isomorphisms. In particular, a search procedure has been developed in a
calculus including polymorphism, dependent types and strong sum types, and has
been implemented in an earlier version of the Coq proof assistant [129]. The second
contribution resides in the design of a tactic language, called Ly, developed in the
framework of Coq. This new meta-language allows the user to write not only small
and local automation routines, but also significant and complex proof procedures.
Finally, the third contribution consists of a new proof language, developed in the
context of Coq. This proof language is intended to be independent of a given proof
style, and therefore allows the user to develop proofs in procedural, declarative and
proof-term based styles.

B.1 INFORMATION RETRIEVAL IN PROOF LIBRARIES

Contribution in collaboration with B. Werner and R. Di Cosmo.
Coq project (INRIA), Rocquencourt (France), 1997.
Published in [43, 48, 42].

As seen in Chapter 2, it is quite important to develop well structured specifications,
as it provides some appropriate properties, such as maintainability or reusability
for example. However, these more and more structured specifications impose deep
changes in the methods used to retrieve information in these specifications. In
particular, these deep changes require a good knowledge of the structures used in the
specifications in order to make these methods at least effective and at best efficient. In
the following, we describe a contribution which consists of a method of information
retrieval in proof libraries using type isomorphisms, and which was experimented in
the context of the Coq proof assistant [129].

59

60

FORMER CONTRIBUTIONS

B.1.1 Use of Type Isomorphisms

When dealing with information retrieval, it seems clear that using identifiers as keys
is quite ineffective. Finding a piece of code, a given theorem or anything else just
by providing its name is more a matter for pure coincidence than for a thoughtful
approach. Thus, a more effective approach consists in considering types (if available) as
search patterns and performing comparisons modulo a given equivalence. Again, this
equivalence between types must be elaborated enough, otherwise the corresponding
search is quite ineffective. For instance, the syntactic equality is inappropriate as it does
not deal with the problem of argument permutations in functions for example. The
most favorable concept for search in libraries has been highlighted by M. Rittri [114],
and is that of type isomorphism. One of the main interests of this concept is that it
has been a very intensive research domain, and it has been studied for many years by
R. Di Cosmo, G. Longo, K. Bruce and S. Soloviev [115, 29, 62] for example. However,
when using type isomorphisms for retrieval information, the main difficulty resides
in building a theory with appropriate properties. In particular, the theory must be
obviously at least correct, but it is also desirable to have a complete and decidable
theory. As expected, the more sophisticated the typing system is, the more difficult
it is to find a suitable theory. Typically, the presence of high-level structures, such as
modules or objects, tends to make the theory much more complicated. In addition,
to make information retrieval more effective, it is necessary to add unification in the
type isomorphism theory. This problem is even more complicated, as the unification
modulo the whole theory is generally undecidable even when considering the simplest
theory (see below).

The basic theory from which every theory is actually built and used for infor-
mation retrieval is that one established for Closed Cartesian Categories (CCCs) by
S. Soloviev [115], and which consists of the seven following type equalities:

1. AXB=BxA

2. Ax(BxC)=(AxB)xC

3. (AxB)-C=A—-B—C

4. A= (BxC)=(A—B)x(A—C)
5 AXxT=A

6. A= T=T

7. T A=A

where A, B and C are arbitrary types, and T is a constant for the unit type.

This theory has been shown correct and complete for CCCs. Furthermore, it is also a
decidable theory, which can be implemented by simple term-rewriting algorithm and
which has been used by M. Rittri [114] for information retrieval in function libraries
of the functional language Lazy ML [10]. Afterwards, R. Di Cosmo enhanced this
theory with polymorphism and unification [61], and a tool based on this theory was
implemented for information retrieval in libraries of Caml Light [127]. One of the

B.1 INFORMATION RETRIEVAL IN PROOF LIBRARIES

main goals of the contribution described below was actually to deal with information
retrieval in proof libraries (i.e. searching at the same time functions and theorems),
which required to extend the above theory in order to consider more complicated type
systems able to totally specify the behavior of functions in particular.

B.1.2 Application to Proof Libraries

Contrary to libraries of functions, libraries of proofs contain both functions and
theorems (properties with proofs). If the types of functions may be simple (if they are
just partial specifications of functions), the types of theorems may be quite complicated
depending on the expressiveness of the corresponding type system. As a consequence,
it is necessary to explicitly define the domain of types for which we want to write
a theory of type isomorphisms, since these types may be very rich. In the present
contribution [43], the idea was to develop an information retrieval tool for the Coq
proof assistant [129], which relies on the theory of Calculus of Inductive Constructions
(CIC), a quite expressive type theory. The objective of this tool was obviously not
to consider the whole theory of CIC, and the aimed extension was to deal with
dependent types (dependent products and Z-types) in order to manage types of
theorems effectively. This extension may probably seem minor, but it has some major
consequences over the theory of type isomorphisms, as well as over the corresponding
search method. Here are some of difficulties we faced and the different solutions we
provided:

e When looking for a given theorem and when finding another theorem with
a different type (but isomorphic to the search type), it is necessary to be able
to apply this theorem using an appropriate function of conversion. To do so,
the corresponding theory must only deal with definable type isomorphisms,
i.e. type isomorphisms with conversion functions which allow us to pass from
one type to the other one and vice versa, and which can be expressed in the
considered language. This condition together with the presence of dependent
types imposes to explicitly keep track of the conversion functions in the several
equalities representing the theory of type isomorphisms. For example, given
two types A and B and the corresponding conversion functions ¢ : A — B and
T : B — A, it makes no sense to consider an isomorphism between Ilx : A.C
and Ilx : B.C; there is actually no reason for having both these two types well
formed at the same time. However, we can exhibit conversion functions between
ITx : A.C and Ilx : B.C[x < (T x)]. The situation is quite similar with X-types.
This necessity of keeping the conversion function attached to the equalities of
type isomorphisms is not really surprising, and was also observed when dealing
with type isomorphisms in presence of modules [3, 4].

e A property of conversion functions is that they commute, i.e. considering the
two previous types A and B with their conversion functions ¢ and 7, we have
cotT = Idg and Too = Idy, where Idg and Id4 are respectively the identity
functions over types B and A. To ensure this property, we have to modify the
conversion rule by extending the reduction rules with more extensional simpli-
tications like r-conversion or surjective pairing. Up to now, the main reason

61

62

FORMER CONTRIBUTIONS

for considering these additional reductions was to make the theory complete,
that is to have the syntactical and semantical notions coincide. In the case of
calculi with dependent types, the situation changes. Namely, these generalized
n-reductions become necessary not only for a matter of completeness, but also,
more drastically, to be able to build up a theory compatible with the typing. For
instance, given the two types A and B above with their conversion functions,
the two types I'lx : A.C and Ilx : B.C[x < (T x)] are isomorphic and their
conversion functions are the following;:

Af i (TIx: A.C).Ax : B.f (T x)
Af i (TIx : B.Clx + (T x)]).Ax : A.f (0 x)

The last function is of type Ilx : B.C[x + (T x)] — Ilx : A.C[x < (7 (0 x))],
which is only of the expected type if the term (7 (¢ x)) can be reduced to x
possibly using the extensional rules. This example also shows that the contextual
closure of the basic equalities of type isomorphisms is not straightforward, as
a replacement of a type by another type may induce some changes over the
context.

The previous requirement of extending the reduction rules is actually problematic
when the goal is to develop an information retrieval procedure for the Coq proof
assistant. As it is not possible to extend the reduction rules of Coq in a standard
way, the basic idea consists in only considering the reduction rules of Coq, such
as B-reduction. However, restricting reduction rules makes the theory incorrect;
typically, the above example does not work. Therefore, the idea is to allow a
given type replacement which implies the presence of a conversion function
in the type context only if the conversion functions of this type replacement
commute using only B-reduction. Thus, the above example is allowed only if
(T (0 x)) can be reduced to x by B-reduction. With this restriction, the theory
is obviously incomplete, but remains correct. This incompleteness has some
consequences over the term-rewriting algorithm used to implement a search
tool for Coq. In particular, the rewriting system is not confluent. For example,
the type Ilx : T.Xy : A.B can be rewritten into two different types: either
(Xy : AB)[x < %] or Zy : (Ilx : A.T).Ilx : T.Bly < (y x)], where x is the
unique element of the T type; this critical pair cannot be reduced since this
requires a replacement in the type of y in the second term which involves
additional reduction rules concerning the T type. This problem of confluence
implies to impose a partial order over the application of rewriting rules and we
obtain normal forms (probably more complicated than could be expected) that
can be compared up to permutation of the X-components of the type (in the
same way as the procedures of M. Rittri and R. Di Cosmo respectively do for
Lazy ML and Caml Light).

An implementation of the theory seen above (it is actually an implementation of
a sub-theory of this theory corresponding to the restriction over the reduction rules)

B.2 A PROOF DEDICATED META-LANGUAGE

was developed for the Coq proof assistant (for some sub-versions of version 6), and
was able to browse the whole standard library of Coq.

This work should be able to be reused in the framework of the Focal environ-
ment [13, 132], introduced previously. Even if properties are first-order propositions in
Focal, the notion of species introduces both polymorphism and dependent types (see
Appendix A) by means of parameterization. The species parameters (using the “is”
keyword) are actually type parameters and are similar to parametric polymorphism,
whereas the entity parameters (using the “in” keyword) allow a type to get depen-
dencies w.r.t. given terms and therefore provide a sort of dependent types. However,
the previous work regarding the dependent types of Coq cannot be directly applied
in the context of Focal, since the notions of polymorphism and dependent types are
actually embedded in the concept of species, and thus some preliminary work is
necessary. In particular, it is important to understand how the theory of Focal can be
interpreted w.r.t. the existing Pure Type Systems (PTSs). For instance, species clearly
introduce dependent types, but probably under a weaker form than in AIl, and this
point remains to be precised. Once this relationship with PTSs clarified (by means of a
specific encoding of Focal in a given PTS for example), it should be possible to apply
to Focal the work developed for Coq and probably in a more straightforward way.

B.2 A PROOF DEDICATED META-LANGUAGE

Contribution in collaboration with B. Werner.
Coq project (INRIA), Rocquencourt (France), 1997-2001.
Published in [44, 46, 51, 45].

The second contribution consists of the description of a tactic language, called
L and designed in the framework of the Coq proof assistant [129]. This language
is intended to provide a higher power of automation for the proof language while
remaining quite abstract w.r.t. the implementation language of the proof system.

B.2.1 Evolution of Meta-Languages

In the early 1970’s, M. J. C. Gordon, R. Milner and C. P. Wadsworth designs a formal
reasoning assistant, called LCF [75] (the short for “Logic for Computable Functions”)
and initially implemented at the universities of Edinburgh and Stanford. As part of
the LCF paradigm, there is a notion of Meta-Language [74] (ML for short), as opposed
to the object language (i.e. the logic language). This language is functional and allows
us to implement an abstract data type of theorems, as well as some techniques to
build proofs automatically. Initially, the first versions of LCF were implemented in Lisp,
but with the evolution of ML, which is now a quite general-purpose programming
language (with numerous variants), most of the direct descendants of LCF use ML
also an implementation language. For example, this is the case of Coq [129] or
HOL [135]. This evolution of ML has some interesting consequences over the LCF-
like proof assistants. In particular, this fusion between the meta-language and the
implementation language allows us to write any tactic, which can have stronger and
deeper interactions with the system. This is a significant evolution, which makes the

63

64

FORMER CONTRIBUTIONS

design of more complex tactics possible. However, the choice of such a meta-language
has also several consequences and constraints that must be considered. Here are some
of these consequences and constraints:

e The proof assistant must provide the means to prevent possible inconsistencies
arising from user tactics. This can be done in various ways. For example, in LCF
and HOL, this is done by means of an abstract data type of theorems and tactics
must produce objects of this type. In Coq, this is achieved by the type-checker,
which verifies the term built by a tactic is of the expected type.

e The user must learn another language which is, in general, quite different from
the proof language. Therefore, it is important to consider how much time the
user is ready to spend on this task which may be quite difficult or at least,
tedious.

e The language must come with a dedicated debugger, because finding errors in
tactic code is much harder than in proof scripts developed in the proof language,
where the system is supposed to assist the user in locating errors.

e The proof system must have a clear and a well documented code, especially for
the proof engine part. The user must be able to easily and quickly identify the
necessary primitives or he/she could easily get lost in the development code.

o The tactics are not portable (contrary to the first versions of LCF, where the system
evolutions did not affect the meta-language layer) and must be maintained.

e The language is quite general-purpose and does not provide proof dedicated
procedures in a primitive way.

Thus, writing tactics in a full programmable language involves many constraints
not only for developers, but also for users. The idea of a new meta-language, which
would evolve between the proof and implementation languages, started from this
observation. This language did not have to be fully programmable, but instead had to
provide an appropriate set of proof combination primitives, which would allow the
user to easily write powerful tactics. From this idea, a new tactic language, called Ly,
was then introduced in the Coq proof assistant.

B.2.2 The L, Meta-Language

The introduction of Ly [44, 46, 45] in Coq (from version 7) can be seen as an extension
of the set of proof combination primitives, called tacticals in Coq. This set of tacticals
was actually very basic (branching, loops, etc), and the idea of L, was to provide
a more expressive language with new operators dedicated to proof engineering in
particular. Therefore, Ly, consists of a small functional core with recursion to have
some higher order structures and with pattern-matching operators both for terms
as well as for proof contexts to handle the proof process. The power of Ly, actually
resides in the specificity of the pattern-matching operators, which offer non-linear first
and second order unification and can perform backtracking over each clause of the

B.2 A PROOF DEDICATED META-LANGUAGE

pattern-matching. In addition, subterm pattern-matching is also available, with the
possibility of handling the contexts of the matched subterms and with a backtracking
support over the several occurrences of a given subterm pattern. For the full syntax
definition of Ly, the reader can refer to the reference manual of Coq [129].

The different operators of Ly, allow us to write powerful tactics quite easily and in
a very compact way. Moreover, these tactics are defined directly in the proof language
and the user just has to learn a very minimal set of operators. Thus, most of the
constraints regarding the use of a meta-language too close to the implementation
language (see above) vanish with the introduction of this more domain-specific meta-
language. However, this meta-language also requires to pay attention to some of its
specific features. In particular, a dedicated debugger comes with Ly, as it appears
very difficult to debug manually tactics using backtracking; it is also necessary to
provide appropriate means to track typing errors occurring in Coq terms, as tactics can
build arbitrary and potentially not well-typed terms. Another point, we have to pay
attention to, is that Ly, is not fully programmable, so that some very complex tactics
may require to switch to OCaml, the implementation language of Coq. Nevertheless,
Ly still helps at this level, since it is possible to include L. code in OCaml code by
means of a system of quotations provided by Camlp5 [41]; the converse is also possible
using antiquotations which import OCaml code into £, code embedded in quotations.

Initially, Lt was designed to deal with small and local automation, typically
in the toplevel when the user is actually doing a proof. However, L, appeared
much more powerful than expected and could be used to deal with non-trivial
problems of automation. For example, a tactic, called “tauto” and able to prove
intuitionistic propositional formulas (based on the contraction-free sequent calculi LJT*
of R. Dyckhoff [65]), was developed by the author. There was already a version of this
tactic written in OCaml and compared to this version, we observed several significant
differences and gains. In particular, we obtained a drastic reduction in size (from
2000 lines to 40 lines of code), as well as a considerable increase in performance (up to
95% for some examples). These spectacular results can be explained by the use of some
of the proof-dedicated operators (mainly the backtracking pattern-matching over proof
contexts), which allows us to express Dyckhoff’s algorithm quite naturally. Another
non-trivial example is the development still by the author of the tactic “field” [51, 52]
(see Section D.3 of Appendix D), which aims to solve equalities over fields. This tactic
was coded in a total reflexive way [27, 78] and fully in Ly, even for the reification
step of the reflexion process, which is usually done in OCaml (since it requires to
perform logical introspection). In addition, some other significants developments were
also realized by the user community, which has generally provided quite positive
feedbacks w.r.t. the introduction of L, in Coq; see [35, 85] for instance. For other
examples of complex tactics written in Ly, the reader can refer to [45, 34].

B.2.3 Future of Meta-Languages

The Ly, tactic language provides several evolutions in the domain of meta-languages
for proof assistants. In particular, it advocates to move the meta-language closer
to the proof language, even if it compels the meta-language to be distinct from the

65

66

FORMER CONTRIBUTIONS

implementation language of the proof assistant. It allows the user to write tactics in a
well constrained environment, which prevents him/her from building incorrect tactics
in a very convenient way and directly within the proof assistant. Another evolution
provided by Ly, is the idea of making the meta-language more specific to the domain
of formal proofs. This idea is essentially achieved by the introduction of backtracking
pattern-matching operators, which offers the features of a functional language with a
typical flavor of logic programming. Thus, if we had to summarize the foundation
of L5, we would say that ML was initially designed to write tactics for LCF-like
proof assistants, but evolved in such way that it has become a quite general-purpose
language which does not provide appropriate built-in primitives for the design of
tactics; the aim of Ly, is to give a genuine and suitable meta-language back to proof
assistants.

These different evolutions of meta-languages raise the following question: what
future can we expect for meta-languages adapted to proof assistants? Here are some
elements of answer we can bring in the context of L, (many of them are essentially
experiment feedbacks and therefore deserve to be considered in the short term):

e Future proof dedicated meta-languages will have to correctly handle pattern-
matching over terms in presence of binders. In Ly, this feature is not managed
in a fully satisfactory way. In particular, if the pattern-matching of a term
containing binders is actually straightforward, the pattern-matching of a binder
or under a binder is made by means of a specific second-order operator, of
which the use is restricted. This mechanism deserves to be more flexible, and
even if we are dependent on the De Bruijn representation used by Coq for
terms with binders, it should be of great help to study the many different
binder representation strategies used to address the PorLMARK challenge [12] in
particular. Among these alternative solutions, there are Higher-Order Abstract
Syntax (HOAS) [109], nominal syntax [69], or locally nameless syntax [73]. In
addition, it should be noted that a recent contribution [117] tends to tackle this
problem of pattern-matching with binders in a context similar to that of L.

e Complex and efficient automation procedures generally make use of tables.
These tables allow us to store propositions, terms, names, and any information
that may be useful during the process of building proofs. However, as the
logic language is usually purely functional, these tables must be provided by
the meta-language. Since Ly, is a layer over ML, this means that appropriate
commands must be implemented in ML and made available at the Ly, level.
Such functionalities should allow us to write more purely Ly, tactics. This
is the case of the tactic “field” [51, 52] (see Section D.3 of Appendix D) for
example, where a table is used to store the field theories. A formalization of
the introduction of tables in a similar context is described in [117], and could
certainly be implemented for Ly,.

o As Ly tends to go away from ML and to move closer to the logic layer, the
question of which data types for L, may be asked. Even if it seems clear that
ML data types cannot be used, this point is not really critical, since for a language
like Ly, it is still possible to use all the data types of the logic layer and to

B3 FREE-STYLE THEOREM PROVING

handle them by means of pattern-matching. For instance, the reification part of
reflexive tactics [27, 78] can be implemented by means of maps of terms, which
are directly expressed using the logic language (as in the tactic “field”). However,
we can wonder if it is the way to go. The answer is not clear-cut, as the logic
language offers a full range of data types, but also with some constraints of
typing which does not actually concern the meta-language (for example, a list
of terms imposes to handle terms of same type, which is very restrictive from
the meta-language point of view). As a consequence, a set of predefined data
types with appropriate operators might be a reasonable solution. It raises the
problem of determining which data types could be worth being included in this
set though.

o In Ly, tactics are either applied to a goal, or produce a term. These two kinds
of behaviors cannot actually be merged, and a desirable extension could be to
allow a same tactic to produce a term while also being applied to a given goal
as a sort of side effect. With such an extension, we must become aware of the
difficulty to deal with backtracking, since pattern-matching operators over proof
contexts and terms both provide backtracking and it is not clear how these two
sources of backtracking can be mixed within a same tactic.

B.3 FREE-STYLE THEOREM PROVING

Contribution in collaboration with B. Werner.
Coq project (INRIA), Rocquencourt (France), 1997-2001.
Published in [47, 45].

The third contribution consists of the description of a proof language, called L,
and designed in the framework of the Coq proof assistant [129]. This language is
intended to be the fruit of a fusion between several proof styles, and to therefore
provide a significant degree of flexibility for the user when developing his/her proofs.

B.3.1 The Several Proof Styles

A proof language is a language used to describe proofs in a proof assistant. Here,
the word “proof” means a script (of instructions or expressions) to be presented to a
machine for checking. As expected, there are several ways of explaining a proof to a
proof assistant, which all of them rely on the proof engine of the proof assistant. These
questions were actually not at the center of concerns when the first implementations
of proof assistants appeared in the late 1960’s, and we had to wait for the middle
1990’s that the seminal paper of J. Harrison [80] provides some elements of comparison
between the different existing proof styles. In particular, procedural and declarative
styles are contrasted each other in this paper.

The procedural style consists in giving instructions to a proof machine, which stores
the state of the proof. Procedural proofs are naturally backward-oriented, as the
philosophy relies on tackling the goal to be proved providing information as less as
possible. As a consequence, if such proofs are quite appropriate when completed

68

FORMER CONTRIBUTIONS

interactively, they suffer from a lack of readability though, and therefore from a lack
of maintainability. This tends to make such proofs quite sensitive to the changes
of the proof assistant. All the same, most of current interactive theorem provers
are actually based on procedural proof languages, such as Coq [129], HOL [135], or
PVS [146] for example. On the contrary, in the declarative style, the user has to
declare auxiliary lemmas, which can be seen as logical cuts and which once combined
are intended to prove the main goal. In this way, declarative proofs appear more
forward-oriented, as the auxiliary lemmas may be as close as desired to the hypotheses
used to prove the main goal. Such proofs are quite readable because the intermediate
states of proof explicitly appear in the proof script, and they are therefore much more
maintainable than procedural proofs. However, an immediate drawback is the verbose
nature of these proofs, where parts of the initial proposition to be proved must be
repeated as many times as necessary. This tends to make such proofs very fragile to
the changes of specification. In addition, the user has to be very well informed of
the automation procedure which combines the several auxiliary lemmas. There are
actually few theorem provers based on declarative proof languages; we can mention
in particular Mizar [140], TLA+ [96] (of which the proof language is described in [95]),
or Focal [13, 132] (of which the proof language is inspired by that of TLA+; see
Appendix A).

There is actually a third alternative to the procedural and declarative proof styles,
which consists in using the language of proof terms. This language relies on the
Brouwer-Heyting-Kolmogorov interpretation, which provides an interpretation of
intuitionistic proofs, and by extension, on the Curry-Howard isomorphism, which
considers propositions as types and proofs as terms. In such context, searching for
a proof of a given proposition is then simply equivalent to building a term of such
type. When building such a proof term, we are obviously guided by the goal (the
type), which makes this kind of proofs more backward-oriented as in the procedural
style. With appropriate tools (typically tools providing means to simplify the filling
of placeholders), it is possible to write such proofs quite easily. As for readability, it
probably requires a little practice when reading terms as proofs, but a term is full of
information and nothing is actually hidden compared to the procedural approach for
instance. Regarding maintainability, a proof term is robust to the changes of the proof
assistant (if it does not concern its underlying logic), but as declarative proofs, it may
be very impacted by changes of specification. There are a number of proof assistants
using intuitionistic logics and in which it is possible to directly provide terms as proofs
(even if it is often not the default way to build proofs), such as Coq [129], LEGO [137],
or NuPRL [141]. But the best example of such proof assistants is certainly Alfa [124]
(the successor of ALF), as it works primitively with proof terms, which are the only
way to interact with the proof editor.

B.3.2 The L4 Proof Language

Following the previous observations, it is possible to bring out when and where these
different proof styles are useful and should be used. Thus, we will procedural proofs
for small proofs, known to be trivial and realized interactively in backward mode, for

B3 FREE-STYLE THEOREM PROVING

which we are not interested in the formal details. These proofs must be seen as black
boxes. Declarative proofs will be used for more complex proofs that we would like to
build more in forward mode (as a mathematical proof in a textbook), in a batch way
and very precisely, i.e. providing much information to the reader. Finally, proof terms
will be also used for complex proofs, but backward-oriented, built either interactively
or in batch mode (both methods are actually appropriate), and for which we can
choose the level of details (it is possible to hide some type signatures). Thus, these
three proof styles seem to correspond to specific needs, and actually do not deserve to
be opposed.

The idea of L, [47, 45] is to amalgamate the three proof styles identified above,
i.e. the procedural, declarative and proof term based styles. This language was
formalized in the framework of the Coq proof assistant [129], as it primitively provides
both procedural proofs and proof terms. As for declarative features, they were
actually easily simulated in this procedural environment by means of simple logical
cuts. Beyond being the unique language proposing a fusion of three proof styles,
the novelty of L, also resides in the formalization of its semantics. As far as the
author knows, Alfa [124] is the only system which has a formally described proof
language [100]. The formalization of the £, semantics actually goes further, as it
also deals with procedural and declarative proofs. The corresponding semantics is a
big-step semantics, which handles goals under the form of global and local contexts,
and terms which may contain metavariables and which may be refined by side-effects.
The reader can refer to [47, 45] for more details regarding this semantics, and also
for some examples of use of L. In addition, an implementation of £, was also
realized as a prototype for Coq (for some sub-versions of version 7).

B.3.3 The Next Proof Languages

The approach of the L, proof language tends to show that none of the considered
proof styles is actually the panacea with which it would be possible to heal the
difficulty for users of interacting with proof assistants. Thus, instead of taking sides
for or against a given style, £,;; proposes not only a language merging the several
proof styles, but also a sort of methodology indicating how and when using a given
style. However, we can wonder if it is the good way to go, and in particular, what the
current trends in terms of proof languages actually consist of.

Historically, due to the paper [80] of]J. Harrison, declarative proof style impressively
bounced back, with many experiments to introduce declarative features on top of
procedural framework [79, 156, 155, 70, 39], and also to build purely declarative
environments [120, 158]. However, this craze for declarative style was a little surprising,
since the paper of J. Harrison also pointed out the difficulty of introducing too many
formulas in proof scripts, which tends to increase the viscosity of the proofs; this
was also noted later in [104]. As a matter of fact, we had to bow to the evidence that
it was difficult to get the best of the two worlds. If £, tends to bring a solution,
it is also difficult to assess this solution as it was actually never used by Coq users
(the corresponding prototype was not released), contrary to the L, language [44, 46,
45] (see Section B.2). Failing that, some of the current trends aim to still promote

69

70

FORMER CONTRIBUTIONS

declarative proofs while keeping their viscosity low. One way to do so should consist in
making mechanized proofs and proofs from textbooks closer, as we know that in paper
proofs, we take the liberty of making a number of shortcuts, which avoid to repeat
formulas in particular. This approach is proposed in [152], where a specialized format
of proof intends to reconcile published proofs and proof scripts. Another experiment
quite close to this idea was conducted by the MathLang project [87], with the aim of
developing an approach for computerizing mathematical texts and knowledge, which
allows various degrees of formalization, and which is compatible with different logical
frameworks and proof systems.

However, it is also important to become aware that the approaches above impose
an appropriate automation, able to combine proof statements as desired in the initial
textbooks. The problem is actually even more general, and consists in understanding
what place automation should occupy in the future proof languages. Automated
proofs must be handled with care, as they are black boxes and therefore break the
properties of readability and maintainability. Even if the user is given the possibility
of consulting an automated proof, the result is generally unreadable and of little use
(see Section 3.2 of Chapter 3 for example). As for maintainability, the user has little
influence over automation, and is subjected to the changes of automation. Thus, the
scope of automation must be clearly delimited. The limits of this scope are actually
closely related to the proof style. For instance, a user of procedural proofs may
be surprised by a too powerful automation, which performs more proof steps than
expected, while a user of declarative proofs may be disappointed by a too weak
automation, which cannot combine proof statements as combined in his/her paper
proof. Thus, depending on the proof style, automation must be well balanced or at
least well controlled, as pointed out by [88, 157] for example respectively in procedural
and declarative settings, and should therefore play a full role in the design of the next
proof languages.

STUDENT SUPERVISION

C.1 PHD STUDENTS
c.1.1 Jean-Frédéric Etienne (2004-2008)

Supervision: David Delahaye (50%) and Véronique Donzeau-Gouge (50%, CNAM).
Time/Grant: from January 2004 to July 2008 (defended on July 7, 2008); MAE grant.
Current Job: Software engineer at SafeRiver (security and dependability).

Title: “Certifying Airport Security Regulations using the Focal Environment”.
Abstract: In the framework of the EDEMOI project, this PhD thesis was aiming to
integrate and apply several requirements engineering and formal methods techniques
to analyze regulations in the domain of airport security. In particular, one of the
objectives was to apply the Focal tool to a concrete study case, namely the formalization
of airport security regulations. The idea was to answer two needs: the formalization
itself for the EDEMOI project, and the assessment of the Focal environment over a
real-world study case.

c.1.2 Pierre-Nicolas Tollitte (2009-now)

Supervision: David Delahaye (50%) and Catherine Dubois (50%, ENSIIE).
Time/Grant: from October 2009; MESR doctoral contract.

Title: “A Formal Verification Tool for Modeling Effective Mathematics”.

Abstract: This PhD thesis comes within the scope of strong applicative problematics
and consists in developing a complete Focal environment, which allows us to model
effective mathematics. Concretely, it aims to carry on with the formalization effort
of computer algebra realized in Focal, in order to bring into relief some possible
limitations of the design features of the Focal language in particular. The objective is
then to elaborate the corresponding extensions to Focal, while keeping these extensions
semantically and formally founded, and to integrate them to the compiler.

c.1.3 Meélanie Jacquel (2010-now)

Supervision: David Delahaye (40%), Catherine Dubois (20%, ENSIIE), and Karim Ber-
kani (40%, Siemens Transportation Systems).

Time/Grant: from January 2010; ANRT CIFRE contract.

Title: “A Mechanized Proof Method for Automating Proofs in the Set Theory of B”.

71

72

STUDENT SUPERVISION

Abstract: The goal of this PhD thesis consists in increasing the automation of the Ate-
lier B, and therefore in significantly reducing the development costs by automatically
discharging a maximum of proof obligations. More precisely, the idea is to work in
the context of an external formal environment (developed in Coq), which allows us to
validate rules to be added to the theory of B.

C.2 MASTER AND ENGINEERING STUDENTS
c.2.1 Yuan Gang (2003)

Supervision: David Delahaye (100%).

Time/Degree Course: from April to September 2003; MOCS Master 2nd year.

Title: “Compilation Models for the Focal Environment”.

Abstract: This Master thesis was aiming to study several compilation models for the
Focal language w.r.t. the target languages of the compiler, namely OCaml| and Coq.
In particular, the idea was to compare several models in terms of readability of the
compiled code, which had to ensure both reusability and traceability. From this point
of view, a module-based model appeared to be quite appropriate and was formalized
afterwards during Nicolas Bertaux’s Master thesis (see below).

c.2.2 Nicolas Bertaux (2008)

Supervision: David Delahaye (100%).

Time/Degree Course: from April to September 2008; MOCS Master 2nd year.

Title: “A Module-Based Model for the Focal Environment”.

Abstract: The objective of this Master thesis was to elaborate a compilation scheme
based on modules, and which was supposed to be an alternative to the current scheme
(implemented in the compiler) using records. This new compilation model had the
advantage to provide a higher level view of compiled specifications supplying in
particular traceability.

c.2.3 Pierre-Nicolas Tollitte (2009)

Supervision: David Delahaye (50%) et Catherine Dubois (50%, ENSIIE).

Time/Degree Course: from January to June 2009; ENSIIE 3rd year.

Title: “Generating Certified Functional Code from Inductive Specifications in Focalize”.
Abstract: This engineer’s thesis was aiming to propose a method for generating func-
tional code from inductive specifications in the framework of the Focalize environment
(successor of Focal). This method was consisting of a preliminary mode consistency
analysis, which was verifying that a computation was possible w.r.t. the selected
inputs/outputs, and the code generation itself. The produced code was certified in
the sense that it was systematically supported by a correctness proof also generated in
Focalize.

C.2 MASTER AND ENGINEERING STUDENTS

c.2.4 Sanaa Toumi (2009)

Supervision: David Delahaye (50%) et Renaud Rioboo (50%, ENSIIE).

Time/Degree Course: from April to September 2009; Master MOCS 2nd year.

Title: “Using CAD for Testing First-Order Formulas over Real Closed Fields in Focal”.
Abstract: The goal of this Master thesis was to develop a test procedure for verifying
tirst-order formulas over a real closed field using a Cylindrical Algebraic Decom-
position (CAD for short) of this field. The procedure had to be implemented as an
interface between the Focal environment and the Axiom computer algebra system, in
which there was in particular an implementation of Collins” algorithm able to produce
a CAD for a given real closed field.

c.2.5 Benjamin Laliere (2009)

Supervision: David Delahaye (100%).

Time/Degree Course: from May to June 2009; ESILV 2nd year.

Titre: “Implementation of a Parser for OpenMath”.

Abstract: This engineer’s thesis was aiming to develop a parser for OpenMath, which is
a language based on XML and which allows us to represent mathematical objects. The
OpenMath language is typically used to exchange mathematical data between several
programs, and this parser for OpenMath was intended to be used for dealing with
the data exchanges occurring in the interface integrating the Axiom CAD to Focal and
previously developed by Sanaa Toumi (see above).

73

PUBLICATION ADDENDUM

This appendix provides 5 publications in their entirety, and which intend to support
Chapters 2, 3 and 4. More precisely, papers of Section D.1 and D.2 are related to
Chapter 2, papers of Section D.3 and D.4 to Chapter 3, and finally paper of Section D.5
to Chapter 4.

D.1 PAPER 1. AIRPORT SECURITY REGULATIONS IN FOCAL

This paper is related to Chapter 2 and has been published in [54].

75

Certifying Airport Security Regulations
using the Focal Environment

David Delahaye, Jean-Frédéric Etienne,
and Véronique Viguié Donzeau-Gouge

CEDRIC/CNAM, Paris, France,
David.Delahaye@cnam.fr, etien_jeQauditeur.cnam.fr,
donzeau@cnam. fr

Abstract. We present the formalization of regulations intended to en-
sure airport security in the framework of civil aviation. In particular, we
describe the formal models of two standards, one at the international
level and the other at the European level. These models are expressed
using the Focal environment, which is also briefly presented. Focal is an
object-oriented specification and proof system, where we can write pro-
grams together with properties which can be proved semi-automatically.
We show how Focal is appropriate for building a clean hierarchical specifi-
cation for our case study using, in particular, the object-oriented features
to refine the international level into the European level and parameteri-
zation to modularize the development.

1 Introduction

The security of civil aviation is governed by a series of international standards
and recommended practices that detail the responsibilities of the various stake-
holders (states, operators, agents, etc). These documents are intended to give
the specifications of procedures and artifacts which implement security in air-
ports, aircraft and air traffic control. A key element to enforce security is the
conformance of these procedures and artifacts to the specifications. However, it
is also essential to ensure the consistency and completeness of the specifications.
Standards and recommended practices are natural language documents (gener-
ally written in English) and their size may range from a few dozen to several
hundred pages. Natural language has the advantage of being easily understood
by a large number of stake-holders, but practice has also shown that it can be
interpreted in several inconsistent ways by various readers. Moreover, it is very
difficult to process natural language documents automatically in the search for
inconsistencies. When a document has several hundred pages, it is very difficult
to ensure that the content of a particular paragraph is not contradicted by some
others which may be several dozen pages from the first one.

This paper aims to present the formal models of two standards related to air-
port security in order to study their consistency: the first one is the international
standard Annex 17 [7] (to the Doc 7300/8) produced by the International Civil
Aviation Organization (ICAQ), an agency of the United Nations; the second one

is the European standard Doc 2320 [2] (a public version of the Doc 30, which has
a restricted access status) produced by the European Civil Aviation Conference
(ECAC) and which is supposed to refine the first one at the European level. More
precisely, from these models, we can expect:

1. to detect anomalies such as inconsistencies, incompleteness and redundancies
or to provide evidence of their absence;

2. to clarify ambiguities and misunderstandings resulting from the use of infor-
mal definitions expressed in natural language;

3. to identify hidden assumptions, which may lead to shortcomings when addi-
tional explanations are required (e.g. in airport security programmes);

4. to make possible the rigorous assessment of satisfaction for a concrete regu-
lation implementation and w.r.t. the requirements.

This formalization was completed in the framework of the EDEMOI' [§]
project, which aims to integrate and apply several requirements engineering and
formal methods techniques to analyze regulation standards in the domain of air-
port security. The methodology of this project may be considered as original in
the sense that it tries to apply techniques, usually reserved to critical software, to
the domain of regulations (in which no implementation is expected). The project
used a two-step approach. In the first step, standards described in natural lan-
guage were analyzed in order to extract security properties and to elaborate a
conceptual model of the underlying system [5]. The second step, which this work
is part of, consists in building a formal model and to analyze/verify the model
by different kinds of formal tools. In this paper, we describe two formal models
of the two standards considered above, which have been carried out using the
Focal [12] environment, as well as some results that have been analyzed from
these models.

Another motivation of this paper is to present the Focal [12] (previously Foc)
environment, developed by the Focal team, and to show how this tool is appro-
priate to model this kind of application. The idea is to assess and validate the
design features as well as the reasoning support mechanism offered by the Focal
specification and proof system. In our case study, amongst others, we essentially
use the features of inheritance and parameterization. Inheritance allows us to
get a neat notion of refinement making incremental specifications possible; in
particular, the refinement of the international level by the European level can be
expressed naturally. Parameterization provides us with a form of polymorphism
so that we can factorize parts of our development and obtain a very modular
specification. Finally, regarding the reasoning support, the first-order automated
theorem-prover of Focal, called Zenon, bring us an effective help by automatically
discharging most of the proofs required by the specification.

The paper is organized as follows: first, we give a brief description of the
Focal language with its main structures and features; next, we present our case
study, i.e. the several standards regulating security in airports and in particular,

! The EDEMOI project is supported by the French National "Action Concertée Inci-
tative Sécurité Informatique".

those we chose to model; finally, we describe the global formalization made in
Focal, as well as the properties that could be analyzed and verified.

2 The Focal environment

2.1 What is Focal?

Focal [12], initiated by T. Hardin with R. Rioboo and S. Boulmé, is a language in
which it is possible to build applications step by step, going from abstract spec-
ifications, called species, to concrete implementations, called collections. These
different structures are combined using inheritance and parameterization, in-
spired by object-oriented programming; moreover, each of these structures is
equipped with a carrier set, providing a typical algebraic specification flavor.
Moreover, in this language, there is a neat separation between the activities of
programming and proving. A compiler was developed by V. Prevosto for this
language, able to produce Ocaml [11] code for execution, Coq [10] code? for cer-
tification, but also code for documentation (generated by means of structured
comments). More recently, D. Doligez provided a first-order automated theorem
prover, called Zenon, which helps the user to complete his/her proofs in Focal
through a declarative-like proof language. This automated theorem prover can
produce pure Coq proofs, which are reinserted in the Coq specifications generated
by the Focal compiler and fully verified by Cogq.

2.2 Specification: species

The first major notion of the Focal language is the structure of species, which
corresponds to the highest level of abstraction in a specification. A species can
be roughly seen as a list of attributes and there are three kinds of attributes:

— the carrier type, called representation, which is the type of the entities that
are manipulated by the functions of the species; representations can be either
abstract or concrete;

— the functions, which denote the operations allowed on the entities; the func-
tions can be either definitions (when a body is provided) or declarations
(when only a type is given);

— the properties, which must be verified by any further implementation of
the species; the properties can be either simply properties (when only the
proposition is given) or theorems (when a proof is also provided).

More concretely, the general syntax of a species is the following;:

2 Here, Coq is only used as a proof checker, and not to extract, from provided proofs
and using its Curry-Howard isomorphism capability, Ocaml programs, which are
directly generated from Focal specifications.

species <name> =

rep [= <type>[; (* abstract/concrete
representation *)

sig <name> in <type>; (* declaration *)
let <name> = <body>; (* definition *)

property <name> : <prop>; (* property *)
theorem <name> : <prop> (* theorem *)
proof : <proof>;

end

where <name> is simply a given name, <type> a type expression (mainly
typing of core-ML without polymorphism but with inductive types), <body> a
function body (mainly core-ML with conditional, pattern-matching and recur-
sion), <prop> a (first-order) proposition and <proof> a proof (expressed in a
declarative style and given to Zenon). In the type language, the specific expres-
sion self refers to the type of the representation and may be used everywhere
except when defining a concrete representation.

As said previously, species can be combined using (multiple) inheritance,
which works as expected. It is possible to define functions that were previously
only declared or to prove properties which had no provided proof. It is also
possible to redefine functions previously defined or to reprove properties already
proved. However, the representation cannot be redefined and functions as well
as properties must keep their respective types and propositions all along the
inheritance path. Another way of combining species is to use parameterization.
Species can be parameterized either by other species or by entities from species.
If the parameter is a species, the parameterized species only has access to the
interface of this species, i.e. only its abstract representation, its declarations and
its properties. These two features complete the previous syntax definition as
follows:

species <name> (<name> is <name>, <name> in <name>, ...)
inherits <name>, <name> (<pars>), ... = ...
end

where <pars> is a list of <name> and denotes the names which are used as
parameters. When the parameter is a species, the keyword is is, when it is an
entity of a species, the keyword is in.

To better understand this notion of species, let us give a small example:

Ezample 1 (Finite stacks). To formalize finite stacks, an abstract way is to spec-
ify stacks (possibly infinite) first, and to refine them as finite stacks afterwards.
The specification of stacks might be the following:

species stack (typ is setoid) inherits setoid =

sig empty in self;

sig push in typ —> self —> self;
sig pop in self —> self;

sig last in self —> typ;

let is_empty (s) = lequal (s, lempty);

property ie_empty : lis_empty (lempty);
property ie_push : all e in typ, all s in self,
not (lis_empty (!push (e, s))); ...

end

where setoid is a predefined species representing a non-empty set with an
equality (in the first line, the parameter and the inheritance from setoid show
respectively that we want to be able to compare two items of a stack, but also two
stacks), the "!" notation is equivalent to the common dot notation of message
sending in object-oriented programming (self is the default species when there
is no receiver species indicated; e.g. lempty is for selflempty).

Next, before specifying finite stacks, we can be more modular and formalize
the notion of finiteness separately as follows:

species is_finite (max in int) inherits basic_object =

sig size in self —> int;
property size_max : all s in self, #int_leq (Isize (s), max);

end

where basic_object is a predefined species supposed to be the root of every
Focal hierarchy, int the predefined type of integers and "#int_" the prefix of op-
erations over the type int. Here, we can remark that the species is parameterized
by an entity of a species and not by a species.

Finally, we can formalize finite stacks using a multiple inheritance from the
species stack and is_finite:

species finite_stack (typ is setoid, max in int)
inherits stack (typ), is_finite (max) =

let is_full (s) = #int_eq (Isize (s), max);

property size_empty : #int_eq (Isize (lempty), 0);

property size_push : all e in typ, all s in self, not (lis_full (s)) —>
#int_eq (!size (!push (e, s)), #int_plus (!size (s), 1)); ...

end

2.3 Implementation: collection

The other main notion of the Focal language is the structure of collection, which
corresponds to the implementation of a specification. A collection implements a
species in such a way that every attribute becomes concrete: the representation
must be concrete, functions must be defined and properties must be proved. If
the implemented species is parameterized, the collection must also provide imple-
mentations for these parameters: either a collection if the parameter is a species
or a given entity if the parameter denotes an entity of a species. Moreover, a
collection is seen (by the other species and collections) through its correspond-
ing interface; in particular, the representation is an abstract data type and only
the definitions of the collection are able to manipulate the entities of this type.
Finally, a collection is a terminal item and cannot be extended or refined by
inheritance. The syntax of a collection is the following:

collection <name> implements <name> (<pars>) = ... end

We will not detail examples of collections here since our formalization (see
Section 4) does not make use of them. Actually, the airport security regulations
considered in this paper are rather abstract and do not expect any implementa-
tion. Regarding our previous example of finite stacks, a corresponding collection
will have to provide a concrete representation (using lists for example), defini-
tions for only declared functions (empty, push, pop, last) and proofs for prop-
erties (ie_empty, ie_push, etc). For complete examples of collections, the reader
can refer to the standard library of Focal (see Section 2.5).

2.4 Certification: proving with Zenon

The certification of a Focal specification is ensured by the possibility of proving
properties. To do so, a first-order automated theorem prover, called Zenon and
based on the tableau method, helps us to complete the proofs. Basically, there
are two ways of providing proofs to Zenon: the first one is to give all the prop-
erties (proved or not) and definitions needed by Zenon to build a proof with its
procedure; the second one is to give additional auxiliary lemmas to help Zenon
to find a proof. In the first option, Zenon must be strong enough to find a proof
with only the provided properties and definitions; the second option must be
considered when Zenon needs to be helped a little more or when the user likes
to present his/her proof in a more readable form. In the first option, proofs are
described as follows:

theorem <name> : <prop>
proof : by <props> def <defs>;

where <props> is a list of properties and <defs> a list of definitions.

The proof language of the second option is inspired by a proposition by
L. Lamport [6], which is based on a practical and hierarchical structuring of
proofs using number labels for proof depth. We do not describe this language

here but some examples of use can be found in the formalization of our case
study (see Section 4.4 to get the development).
Let us describe a small proof in our example of finite stacks:

Ezample 2 (Finite stacks). In the species stack, we can notice that with the
definition of is_empty, Property ie_empty can already be proved in the following
way:

theorem ie_empty : lis_empty (lempty)
proof : by lequal_reflexive def lis_empty;

where equal_reflexive is the property of reflexivity for equality, which is in-
herited from the species setoid.

This proof uses the definition of is_empty, which means that any redefinition
of is_empty in any further inheritance invalidates this proof (which has to be
completed again using the new definition). Thus, w.r.t. usual object-oriented
programming, redefinitions may have some additional effects since they directly
influence the proofs in which they are involved.

2.5 Further information

For additional information regarding Focal, the reader can refer to [3], as well
as to the Focal Web site: http://focal.inria.fr/, which contains the Focal
distribution (compiler, Zenon and other tools), the reference manual, a tutorial,
some FAQs and also some other references regarding, in particular, Focal’s formal
semantics (e.g. see S. Boulmé and S. Fechter’s PhD theses).

3 Case study: airport security regulations

The primary goal of the international standards and recommended practices
regulating airport security is to safeguard civil aviation against acts of unlawful
interference. These normative documents detail the roles and responsibilities of
the various stake-holders and pinpoint a set of security measures (as well as the
ways and means to implement them) that each airport serving civil aviation
has to comply with. In addition, the entire regulatory system is organized in a
hierarchical way, where each level has its own set of regulatory documents that
are drafted and maintained by different bodies. At the international level, An-
nex 17 [7] of the International Civil Aviation Organization (ICAO) lays down the
general principles and recommended practices to be adopted by each member
state. It is refined at the European level by the Doc 2320 [2] of the European
Civil Aviation Conference (ECAC), where the standard is made more detailed
and more precise. At the national level, each member state has to establish and
implement a national civil aviation security programme in compliance with inter-
national standards and national laws. Finally, at the airport level, the national
and international standards are implemented by an airport security programme.

All these documents are written in natural language and due to their volumi-
nous size, it is difficult to manually assess the consistency of the entire regulatory
system. Moreover, informal definitions tend to be inaccurate and may be inter-
preted in various inconsistent ways by different readers. Consequently, it may
happen that two inspectors visiting the same airport at the same time reach
contradictory conclusions about its conformity. However, these documents have
the merit of being rigorously structured. Ensuring their consistency and com-
pleteness while eliminating any ambiguity or misunderstanding is a significant
step towards the reinforcement of airport security.

3.1 Scope delimitation

After a deep study of the above-mentioned documents and several consultations
with the ICAO and ECAC, we decided to take as a starting point the preventive
security measures described in Chapter 4 of Annex 17. Chapter 4 begins by
stating the primary goal to be fulfilled by each member state, which is:

4.1 Each Contracting State shall establish measures to prevent weapons,
explosives or any other dangerous devices, articles or substances, which
may be used to commit an act of unlawful interference, the carriage or
bearing of which is not authorized, from being introduced, by any means
whatsoever, on board an aircraft engaged in international civil aviation.

Basically, this means that acts of unlawful interference can be avoided by
preventing unauthorized dangerous objects from being introduced on board air-
craft3. To be able to achieve this goal, the member states have to implement a set
of preventive security measures, which are classified in Chapter 4 according to
six specific situations that may potentially lead to the introduction of dangerous
objects on board. These are namely:

— persons accessing restricted security areas and airside areas (A17, 4.2);
taxiing and parked aircraft (A17, 4.3);

ordinary passengers and their cabin baggage (A17, 4.4);

— hold baggage checked-in or taken in custody of airline operators (A17, 4.5);
cargo, mail, etc, intended for carriage on commercial flights (A17, 4.6);
special categories of passengers like armed personnel or potentially disruptive
passengers that have to travel on commercial flights (A17, 4.7).

At the lower levels of the regulatory hierarchy, the security measures are
refined and detailed in such a way as to preserve the decomposition presented
above. This structure allowed us to easily identify the relation between the dif-
ferent levels of refinement. Due to the restricted access nature of some of the
regulatory documents, the formalization presented in Section 4 only considers
Chapter 4 of Annex 17 and some of the refinements proposed by the European
Doc 2320. Moreover, for simplification reasons, we do not cover the security
measures 4.3 and 4.6.

% Note that the interpretation given to the quoted paragraph may appear wrong to

some readers. In fact, Paragraph 4.1 is ambiguous as it can be interpreted in two
different ways (see Section 4.4 for more details).

3.2 Modeling challenges

Modeling the regulations governing airport security is a real world problem and
is therefore a good exercise to identify the limits of the inherent features of the
Focal environment. Moreover, the ultimate objective of such an application is
not to produce certified code but rather to provide an automated support for
the analysis of the regulatory documents. For this case study, the formalization
needs to address the following modeling challenges:

1. the model has to impose a structure that facilitates the traceability and
maintainability of the normative documents. Moreover, through this struc-
ture, it should be possible to easily identify the impact of a particular security
measure on the entire regulatory system;

2. the model must make the distinction between the security measures and
the ways and means of implementing them. Most of the security measures
are fairly general and correspond to reachable objectives. However, their
implementation may differ from one airport to another due to national laws
and local specificities;

3. for each level of the regulatory hierarchy, the model must determine (through
the use of automated reasoning support tools) whether or not the funda-
mental security properties can be derived from the set of prescribed security
measures. This will help to identity hidden assumptions made during the
drafting process. In addition, the model has to provide evidence that the
security measures defined at refined levels are not less restrictive than those
at higher levels.

4 Formalization

4.1 Model domain

In order to formalize the meaning of the preventive security measures properly,
we first need to identity the subjects they regulate, together with their respective
properties/attributes and the relationships between them. It is also essential to
determine the hierarchical organization of the identified subjects in order to
effectively factorize functions and properties during the formalization process.
This is done by determining the dependencies between the security measures,
w.r.t. the definitions of terms used in the corresponding normative document. For
example, let us consider the following security measure described in Chapter 4
of Annex 17:

4.4.1 Each Contracting State shall establish measures to ensure that orig-
inating passengers of commercial air transport operations and their cabin
baggage are screened prior to boarding an aircraft departing from a secu-
rity restricted area.

To be able to formalize this security measure, it is obvious that we will have to
define the subjects originating passenger, cabin baggage, aircraft and security re-
stricted area, together with the relations between them. Moreover, we will need to
define appropriate attributes for the originating passenger subject to characterize
the state of being screened and of being on board. Finally, to complete the formal-
ization, we will have to specify the integrity constraints induced by the regulation
(e.g. screened passengers are either in security restricted areas or on board air-
craft). The hierarchies of subjects obtained after analyzing all the preventive se-
curity measures of Annex 17 are represented by a Focal model, where each subject
is a species. For instance, the Focal model for airside persons is given in Figure 1
(where nodes are species
and arrows inheritance re-
lations s.t. A + B means
species B inherits from A).

For possible extensions
during the refinement pro-
cess, the representation of
the species is left unde-
fined (abstract) and their
functions are only declared.
Moreover, since we are not
concerned with code gen-
eration, our formalization
does not make use of collec-
tions. For example, the fol-
lowing species corresponds to the specification of the cabin person subject:

Fig. 1. Hierarchy for airside persons in Annex 17.

species cabinPerson (obj is object, obj_set is basic_set (obj),
do is dangerousObject, do_set is basic_set (do),
wp is weapon, wp_set is basic_set (wp), id is identity,
c_luggage is cabinLuggage (obj, obj_set, do, do_set, wp, wp_set),
cl_set is basic_lset (obj, obj_set, do, do_set, wp, wp_set, c_luggage))
inherits airsidePerson (obj, obj_set, do, do_set, wp, wp_set, id) =

sig embarked in self —> bool;
sig get_cabinLuggage in self —> cl_set;

property invariant_weapons : all w in wp, all s in self,
wp_set!member (w, lget_weapons (s)) —> not (wplinaccessible (w));

end

The species cabinPerson specifies the common functions and properties for
the different types of persons who are eligible to travel on board an aircraft. In
order to specify the relations between cabin persons and the different items they
can have access to during flight time, the species cabinPerson is parameterized
with the species object, dangerousObject, weapon and cabinLuggage. The pa-
rameters obj_set, do_set, wp_set and cl_set describe the sets of the previously

identified items; they are introduced to express the fact that a cabin person can
own more than one item at a time. Since most of these relations are already spec-
ified in the species airsidePerson, they are inherited automatically. The function
get_cabinLuggage is only introduced to make accessible the set of cabin luggage
associated to a given instance of cabinPerson. Property invariant_weapons is a
typical example of integrity constraints imposed by the regulation. It states that
when weapons are carried by cabin persons, they are by default considered to be
accessible during flight time.

4.2 Annex 17: preventive security measures

As said in Section 3.2, the formal model needs to impose a certain structure that
will facilitate the traceability and maintainability of the normative documents.
To achieve this purpose, our model follows the structural decomposition pro-
posed in Chapter 4 of Annex 17 (using inheritance), while taking into account
the dependencies between the preventive security measures. In our model, since
most of the security measures correspond to reachable objectives, they are de-
fined as invariants and each airport security programme must provide procedures
which satisfy these invariants. However, when the security measures describe ac-
tions to be taken when safety properties are violated, a procedural approach is
adopted. The consistency and completeness of the regulation are achieved by
establishing that the fundamental security property, defined in Paragraph 4.1 of
Annex 17, is satisfied by all the security measures, while ensuring their homo-
geneity. The general structure of the Annex 17 model is represented in Figure 2.
The species airsidePersons,
ordinaryPassengers, spe-
cialPassengers and baggage
introduce the set domain
of the subjects presented
in Section 4.1 as well as
their relational constraints
(e.g. two passengers can-
not have the same lug-
gage). The preventive se-
curity measures are for-
malized in species al7prop-
erty4d_2, alTproperty4.4,
al7property4_5, al7prop-
erty4_7 and their depen-
dencies are defined according to the hierarchical organization of the subjects they
regulate. The fundamental security property is defined in species al 7property4_1.
It is at this level that the set of on board objects is defined. Finally, the theorems
establishing the consistency and completeness of the regulation are defined in
the species annex17.

al7property4 1

al7property4 5

al7property4 4 al7property4 7
al7property4 2 ordinaryPassengers special Passengers

Fig. 2. Structure of Annex 17.

Security measures related to ordinary passengers As an example, we
can focus on Property 4.4 of Annex 17 related to security measures for ordinary
passengers. This property is divided into four sub-properties and, for example,
we can describe how Property 4.4.1 (cited in Section 4.1) was formalized:

Ezample 8 (Property 4.4.1). Security measure 4.4.1 states that originating pas-
sengers and their cabin baggage should be screened prior to boarding an aircraft.
In species al7property4_4, this statement is formalized as follows:

property property_4_4_1 : all p in op, all s in self,
op-set!member (p, loriginatingPassengers (s)) —>
oplembarked (p) —> oplscreened (p);

where p represents an originating passenger and s the current state of species
al7property4_4. It should be noted that the scope of the boolean function
screened extends to cabin baggage as well, since cabin baggage remains with
its owners throughout the boarding process. The fact of being a screened ordi-
nary passenger is defined in the species controlledPassengers (see Figure 1) as
follows:

property invariant_screened : all s in self,
Iscreened (s) —> wp_setlis_empty (!get_weapons (s)) and
wp_setlis_empty (cl_set!get_weapons (!get_cabinLuggage (s))) and
all o in do, do_set!member (o, !get_dangerousObjects (s)) or
do_set!member (o, cl_set!get_dangerousObjects
(Yget_cabinLuggage (s))) —> dolis_authorized (o);

where s represents a controlledPassenger. Property invariant_screened states
that if a passenger is screened, he/she does not have any weapons and if the
passenger does have a dangerous object (other than weapons), it is authorized.
A similar property also exists for Property 4.4.2 (which concerns transfer pas-
sengers) and could be factorized via the parameterization mechanism of Focal.

From this property and the three others (4.4.2,4.4.3 and 4.4.4), we can prove
the global property 4.4 that ordinary passengers admitted on board an aircraft do
not have any unauthorized dangerous objects. This intermediate lemma is used
afterwards when proving the consistency of the fundamental security property
(4.1) w.r.t. the preventive security measures.

Consistency of Annex 17 Once we completed the formalization for each of
the different categories of preventive security measures and derived the appro-
priate intermediate lemmas, we can consider Paragraph 4.1 (see Section 3.1) of
Annex 17. It is formalized as follows in species al7property4_1:

property property_4_1 : all a in ac, all s in self,
ac_set!member (a, !departureAircraft (s)) —>
(all 0 in do, do_set!member (o, lonboardDangerousObjects (a, s)) —>
dolis_authorized (o)) and
(all o in wp, wp_set!member (o, lonboardWeapons (a, s)) —>
wplis_authorized (0));

where a represents an aircraft. This states that dangerous objects are admit-
ted on board a departing aircraft only if they are authorized. In addition, the set
of on board objects for each departing aircraft is defined according to the differ-
ent types of cabin persons (together with their cabin luggage) and according to
the different types of hold baggage loaded into the aircraft. This correlation is
necessary since it will allow us to establish the following consistency theorem:

theorem consistency : !property_4_2 —> lproperty_4_4 —>
Iproperty_4_5 —> lproperty_4_7 —> lproperty_4_1

proof : by do_setlunionl, wp_setlunionl def !property_4_2, !property_4_4,
lproperty_4_5, Iproperty_4_7, !property_4_1;

where property_4_2, property_4_4, property_4_5 and property_4_7 corre-
spond to the intermediate lemmas defined for each category of preventive se-
curity measures. The purpose of Theorem consistency is to verify whether the
fundamental security property can be derived from the set of preventive security
measures. This allowed us to identify some hidden assumptions done during the
drafting process (see Section 4.4). However, this theorem does not guarantee the
absence of contradictions in the regulation. A way to tackle this problem is to
try to derive False from the set of security properties and to let Zenon work on
it for a while. If the proof succeeds then we have a contradiction, otherwise we
can only have a certain level of confidence.

4.3 Doc 2320: some refinements

The document structure of Doc 2320 follows the decomposition presented in
Chapter 4 of Annex 17. Refinement in Doc 2320 appears at two levels. At the
subject level, the refinement consists in enriching the characteristics of the ex-
isting subjects or in adding new subjects. At the security property level, the
security measures become more precise and sometimes more restrictive. The
verification of the consistency and completeness of Doc 2320 is performed in
the same way as for Annex 17 (see the modeling described in Section 4.2).

However, since Doc 2320

refines Annex 17, an ad-
- ditional verification is re-

\T"E”/) quired to show that the se-
- . curity measures that it de-
N al7property4 1 . . .
l \ scribes do not invalidate
- - the ones defined in An-

< al7propeny45 N (al7propeny47)

nex 17. Thus, in addition to
consistency proofs, another
kind of proofs appears, that
¢ Cordnarypasengurs Y pecialPassngers) are refinement proofs. The
e) / o model structure obtained
_arsdeperons. for Doc 2320 is described

in Figure 3 (where the ex-

Fig. 3. Structure of Doc 2320. isting species coming from

Annex 17 are distinguished with dashed nodes). As can be seen, the refinement
is performed in such a way as to preserve the dependencies between the secu-
rity measures. Moreover, it can be observed that unlike species al7property4_2,
al7property4_4 and alT7property4_5, species al7property4_7 does not have a
Doc 2320 counterpart. This is because, in Doc 2320, no mention to special cat-
egories of passengers is made. We assume that in this case, the international
standard still prevails.

A refinement example In Doc 2320, Property 4.4.1 of Annex 17 is refined by
Property 4.1.1, which states that originating passengers are either searched by
hand or screened prior to boarding an aircraft. In species d2320property4, this
statement is formulated as follows:

property d2320property_4_1_1 : all p in op, all s in self,
op-set!member (p, loriginatingPassengers (s)) —>
oplembarked (p) —> oplscreened (p) or op'handSearched (p);

To prove that Property d2320property_4_1_1 does not invalidate Property
property_4_4_1, the following theorem is used:

theorem refinement : !d2320property_4_1_1 —> !property_4_4_1
proof : by oplinvariant_handSearched, op!invariant_screened
def 1d2320property_4_1_1, lproperty_4_4_1;

The above theorem is provable since in species controlledPassenger2320,
which is a refined version of species controlledPassenger, the boolean function
handSearched is characterized by the same properties than the boolean function
screened (e.g. Property invariant_screened).

4.4 Analyses and results

An example of ambiguity As seen in Section 3, Paragraph 4.1 of Annex 17 is
very important as it states the primary goal of the preventive security measures
to be implemented by each member state. However, it appears to be ambiguous
since it can be interpreted in two different ways: either dangerous objects are
never authorized on board or they are admitted on board only if they are au-
thorized. According to the ICAQ, the second interpretation is the correct one as
Paragraph 4.1 needs to be considered in the general context of the regulation to
clarify this ambiguity.

Hidden assumptions In trying to demonstrate that Paragraph 4.1 of Annex 17
is consistent w.r.t. the set of preventive security measures, we discovered, for
instance, the following hidden assumptions:

1. since disruptive passengers who are obliged to travel are generally escorted
by law enforcement officers, they are considered not to have any dangerous
objects in their possession;

2. unlike other passengers, transit passengers are not subjected to any specific
security control but should be protected from unauthorized interference at
transit spots. This implies that they are considered to be secure and hence
do not have any unauthorized dangerous objects.

Development The entire formalization takes about 10000 lines of Focal code,
with in particular, 150 species and 200 proofs. It took about 2 years to be
completed. The development is freely available (sending a mail to the authors)
and can be compiled with the latest version of Focal (0.3.1).

5 Conclusion

Summary A way to improve security is to produce high quality standards. The
formal models of Annex 17 and Doc 2320 regulations, partially described in this
paper, tend to bring an effective solution in the specific framework of airport
security. From these formalizations, some properties could be analyzed and in
particular, the notion of consistency. This paper also aims to emphasize the use
of the Focal language, which provides a strongly typed and object-oriented for-
mal development environment. The notions of inheritance and parameterization
allowed us to build the specifications in an incremental and modular way. More-
over, the Zenon automated theorem prover (provided in Focal) discharged most
of the proof obligations automatically and appeared to be very appropriate when
dealing with abstract specifications (i.e. with no concrete representation).

Related work Currently, models of the same regulations, by D. Bert and
his team, are under development using B [1] in the framework of the EDE-
MOI project. In the near future, it could be interesting to compare the two
formal models (in Focal and B) rigorously in order to understand if and how the
specification language influences the model itself. It should be noted that the
same results (see Section 4.4) were obtained from this alternative formalization,
since some of these results were already analyzed before the formalization itself
(during the conception step). Very close to the EDEMOI project is the SAFEE
project [9], funded by the 6th Framework Programme of the European Union
(FP6) and which aims to use similar techniques for security but on board the
aircraft. Regarding similar specifications in Focal, we must keep in mind that the
compiler is rather recent (4/5 years at most) and efforts have been essentially
provided, by R. Rioboo, to build a Computer Algebra library, which is currently
the standard library of Focal. However, some more applicative formalizations
are under development like certified implementations of security policies [4] by
M. Jaume and C. Morisset.

Future work We plan to integrate a test suite into this formalization using an
automatic generation procedure (working from a Focal specification) and using
stubs for abstract functions (i.e. only declared). Amongst other things, this will

allow us to imagine and build attack scenarios which, at least in this context,
appear to be quite interesting for official certification authorities. Such an auto-
matic procedure is currently work in progress, by C. Dubois and M. Carlier, but
is still limited (to universally quantified propositions) and needs to be extended
to be applied to our development. We also plan to produce UML documents
automatically generated from the Focal specifications and which is an effective
solution to interact with competent organizations (ICAO, ECAC). Such a tool
has been developed by J. F. Etienne but has to be completed to deal with all
the features of Focal. Regarding the Focal language itself, some future evolutions
might be appropriate, in particular, the notion of subtyping (there is a notion
of subspecies but it does not correspond to a relation of subtyping), but which
still needs to be specified in the case of properties. Also, it might be necessary
to integrate temporal features in order to model behavioral properties, since in
fact, our formalization, described in this paper, just shows a static view of the
specified regulations.

References

1. J. R. Abrial. The B Book, Assigning Programs to Meanings. Cambridge University
Press, Cambridge (UK), 1996. ISBN 0521496195.

2. The European Civil Aviation Conference. Regulation (EC) N°2820/2002 of the
European Parliament and of the Council of 16 December 2002 establishing Common
Rules in the Field of Civil Aviation Security, December 2002.

3. C. Dubois, T. Hardin, and V. Viguié Donzeau-Gouge. Building Certified Compo-
nents within Focal. In Symposium on Trends in Functional Programming (TFP),
volume 5, pages 33-48, Munich (Germany), November 2004. Intellect (Bristol, UK).

4. M. Jaume and C. Morisset. Formalisation and Implementation of Access Control
Models. In Information Assurance and Security (IAS), International Conference
on Information Technology (ITCC), pages 703-708, Las Vegas (USA), April 2005.
IEEE CS Press.

5. R. Laleau, S. Vignes, Y. Ledru, M. Lemoine, D. Bert, V. Viguié Donzeau-Gouge,
and F. Peureux. Application of Requirements Engineering Techniques to the Anal-
ysis of Civil Aviation Security Standards. In International Workshop on Situational
Requirements Engineering Processes (SREP), in conjunction with the 18" IEEE
International Requirements Engineering Conference, Paris (France), August 2005.

6. L. Lamport. How to Write a Proof. American Mathematical Monthly, 102(7):600-
608, August 1995.

7. The International Civil Aviation Organization. Annex 17 to the Convention on
International Civil Aviation, Security - Safequarding International Civil Aviation
against Acts of Unlawful Interference, Amendement 11, November 2005.

8. The EDEMOI project, 2003. http://www-1sr.imag.fr/EDEMOI/.

9. The SAFEE project, 2004. http://www.safee.reading.ac.uk/.

10. The Coq Development Team. Coq, version 8.0. INRIA, January 2006.
Available at: http://coq.inria.fr/.

11. The Cristal Team. Objective Caml, version 3.09.1. INRIA, January 2006.
Available at: http://caml.inria.fr/.

12. The Focal Development Team. Focal, version 0.3.1. CNAM/INRIA/LIP6, May 2005.
Available at: http://focal.inria.fr/.

92 PUBLICATION ADDENDUM

D.2 PAPER 2! EXECUTING INDUCTIVE RELATIONS

This paper is related to Chapter 2 and has been published in [49].

Extracting Purely Functional Contents
from Logical Inductive Types

David Delahaye, Catherine Dubois,
and Jean-Frédéric Etienne

CEDRIC/CNAM-ENSIIE, Paris, France,
David.Delahaye@cnam.fr, dubois@ensiie.fr,
etien_je@auditeur.cnam.fr

Abstract. We propose a method to extract purely functional contents
from logical inductive types in the context of the Calculus of Inductive
Constructions. This method is based on a mode consistency analysis,
which verifies if a computation is possible w.r.t. the selected inputs/out-
puts, and the code generation itself. We prove that this extraction is
sound w.r.t. the Calculus of Inductive Constructions. Finally, we present
some optimizations, as well as the implementation designed in the Coq
proof assistant framework.

1 Introduction

The main idea underlying extraction in proof assistants like Isabelle or Coq is to
automatically produce certified programs in a correct by construction manner.
More formally it means that the extracted program realizes its specification.
Programs are extracted from types, functions and proofs. Roughly speaking, the
extracted program only contains the computational parts of the initial specifica-
tion, whereas the logical parts are skipped. In Coq, this is done by analyzing the
types: types in the sort Set (or Type) are computationally relevant while types in
sort Prop are not. Consequently, inductively defined relations, implemented as
Coq logical inductive types, are not considered by the extraction process because
they are exclusively dedicated to logical aspects. However such constructs are
widely used to describe algorithms. For example, when defining the semantics
of a programming language, the evaluation relation embeds the definition of an
interpreter.

Although inductive relations are not executable, they are often preferred
because it is often easier to define a relational specification than its corresponding
functional counterpart involving pattern-matching and recursion. For example,
in Coq, it is easier to define the relation "the terms ¢ and u unify with s as a most
general unifier" than defining the function that computes the most general unifier
of t and w if it exists. In this case, the difficulty is to prove the termination of the
function while simultaneously defining it. Moreover, proof assistants offer many
tools to reason about relational specifications (e.g. elimination, inversion tactics)
and the developer may prefer the relational style rather than the functional style,

even though recent work (e.g. in Coq, functional induction or recursive definition)
provide a better support for defining functions and reasoning about them.

Based on these observations, our aim is to translate logical inductive spec-
ifications into functional code, with an intention close to the one found in the
Centaur [3] project, that is extracting tools from specifications. Another moti-
vation for extracting code from logical inductive specifications is to get means
to execute these specifications (if executable), in order to validate or test them.
Better still, in a formal testing framework, the extracted code could be used as
an oracle to test a program independently written from the specification.

In this paper, we propose a mechanism to extract functional programs from
logical inductive types. Related work has been done on this subject around
semantics of programming languages, for example [3,8,1,4,12] and [2] in a
more general setting. Like [2], our work goes beyond semantic applications,
even though it is a typical domain of applications for such a work. In addi-
tion, our extraction is intended to only deal with logical inductive types that
can be turned into purely functional programs. This is mainly motivated by the
fact that proof assistants providing an extraction mechanism generally produce
code in a functional framework. Thus, we do not want to manage logical induc-
tive specifications that would require backtracking, that is more a Prolog-like
paradigm. In that sense, our work separates from Centaur [3], Petterson’s RML
translator [8] and Berghofer and Nipkow’s approach [2]. The first one trans-
lates Typol specifications, which are inductively defined semantic relations, into
Prolog programs. RML is also a formalism to describe natural semantics of pro-
gramming languages, and the corresponding compiler produces C programs that
may backtrack if necessary. Finally, Berghofer and Nipkow’s tool produces code
that can compute more than one solution, if any. We can also mention the use
of Maude [12] to animate executable operational semantic specifications, where
these specifications are turned into rewriting systems.

To turn an inductive relation into a function that can compute some results,
we need additional information. In particular, we need to know which arguments
are inputs and which arguments are outputs. This information is provided by the
user using the notion of modes. Furthermore, these modes are used to determine
if a functional computation is possible, in which case we say that the mode is
consistent. Otherwise, the functional extraction is not possible and is rejected by
our method. In order to make functional computations possible, some premises
in the types of constructors may have to be reordered. The notion of mode, going
back actually to attribute grammars [1], is fairly standard, especially in the log-
ical programming community. For example, the logical and functional language
Mercury [7] requires mode declarations to produce efficient code. Similar mode
systems have already been described in [4,2,9].

The paper is organized as follows: first, we informally present our extraction
mechanism with the help of some examples; next, we formalize the extraction
method itself (in particular, the mode consistency analysis and the code gener-
ation) and prove its soundness; finally, we describe our prototype developed in
the Coq proof assistant framework and discuss some optimizations.

2 Informal presentation

In this section, we present how our functional extraction must work on some
examples. For these examples, we use the Coq framework with, in particular, its
syntax and OCaml [11] as one of its target languages for extraction. Our general
approach is the following:

1. the user annotates his/her logical inductive type with a mode that specifies
which arguments are inputs, the others being considered as outputs;

2. a mode consistency analysis is performed to determine if the extraction is
possible w.r.t. the provided mode;

3. if the previous analysis is successful, the logical definition is translated into
a functional program.

This process may be recursive and may call the regular extraction mechanism
to extract code from functions or proofs.

A mode can be seen as the computational behavior of a logical inductive
type. It is defined as a set of indices denoting the inputs of the relation. For
example, let us consider the predicate add that specifies the addition of two
natural numbers, i.e. given three natural numbers n, m and p, (add n m p)
defines that p is the result of the addition of n and m. This predicate is defined
as follows:

Inductive add : nat — nat — nat — Prop :=
| addO : forall n, addn O n
| addS : forall n m p, addn m p — add n (S m) (S p).

The mode {1, 2} indicates that we consider n and m as inputs and we would
like to compute p. The extracted function is the expected one, defined by pattern-
matching on both arguments (actually only the second one is significant):

let rec add p0 pl = match p0, pl with
| n, O —=n
| n, Sm —letp=addnminSp
| _ — assert false

We can also propose to extract a function with the mode {2,3}. Thus, we
obtain a function that performs subtraction:

let rec add p0 pl = match p0, pl with
| n, O —n
| Sp,Sm —»addpm
| _ — assert false

Finally the mode {1,2,3} means that the three arguments are known and
that we want to produce a function that checks if the triple constitutes a possible
computation or not (as a boolean result):

let rec add p0 pl p2 = match p0, pl, p2 with
| n, O, m whenn = m — true
| n, Sm,Sp »addnmp
| — false

However, with the mode {1, 3}, the extraction is refused, not because of the
mode analysis (which succeeds) but because it would produce a function with
two overlapping patterns, (n,n) (obtained from the type of the first constructor
addO) and (n,p) (obtained from the type of the second constructor addS). With
such a configuration, more than one result might be computed and therefore the
function would not be deterministic, which is incompatible with a proper notion
of function. Extraction with modes involving only one input are refused for the
same reason.

As a last example, let us consider a case where constraints are put on the
results, e.g. in the eval plus constructor the evaluation of al and a2 must map
to values built from the N constructor:

Inductive Val : Set := N :Z — Val | ...
Inductive Expr : Set := V : Var — Expr | Plus : Expr — Expr — Expr.

Inductive eval : Sigma — Expr — Val — Prop :=
| eval v : forall (s : Sigma) (v : Var), eval s (V v) (valof s v)
| eval plus : forall (s : Sigma) (al a2 : Expr) (v w : Z),
eval s al (Nv) —eval s a2 (N w) — eval s (Plus al a2) (N (v + w)).

where Sigma is an evaluation context and valof is a function looking for the
value of a variable in an evaluation context.
With the mode {1, 2}, the extracted function is the following:

let rec eval s e = match s, e with
| s, Vv = valofsv
| s, Plus (al, a2) —
(match eval s al with
| Nv —
(match eval s a2 with
| Nw — N (zplus v w)
| _ — assert false)
| — assert false)

where valof and zplus are respectively the extracted functions from the defi-
nitions of valof and the addition over Z.

Regarding mode consistency analysis, detailed examples will be given in the
next section.

3 Extraction of logical inductive types

The extraction is made in two steps: first, the mode consistency analysis tries to
find a permutation of the premises of each inductive clause, which is compatible
w.r.t. the annotated mode; second, if the mode consistency analysis has been
successful, the code generation produces the executable functional program. Be-
fore describing the extraction method itself, we have to specify which inductive
types we consider and in particular, what we mean exactly by logical inductive
types. We must also precise which restrictions we impose, either to ensure a
purely functional and meaningful extraction, or to simplify the presentation of

this formalization, while our implementation relaxes some of these restrictions
(see Section 5).

3.1 Logical inductive types

The type theory we consider is the Calculus of Inductive Constructions (CIC for
short; see the documentation of Coq [10] to get some references regarding the
CIC), i.e. the Calculus of Constructions with inductive definitions. This theory
is probably too strong for what we want to show in this paper, but it is the
underlying theory of the Coq proof assistant, in which we chose to develop the
corresponding implementation. An inductive definition is noted as follows (in-
spired by the notation used in the documentation of Coq):

Ind(d : 7, 1)

where d is the name of the inductive definition, 7 a type and I, the context
representing the constructors (their names together with their respective types).
In this notation, two restrictions have been made: we do not deal with param-
eters' and mutual inductive definitions. Actually, these features do not involve
specific technical difficulties. Omitting them allows us to greatly simplify the
presentation of the extraction, as well as the soundness proof in particular. Also
for simplification reasons, dependencies, higher order and propositional argu-
ments are not allowed in the type of an inductive definition; more precisely, this
means that 7 has the following form:

T1 — ...Tn — Prop

where 7; is of type Set or Type, and does not contain any product or de-
pendent inductive type. In addition, we suppose that the types of constructors
are in prenex form, with no dependency between the bounded variables and no
higher order; thus, the type of a constructor is as follows:

H?le'ZXle—) —)Tm—>(dt1 tp)

where z; € X;, X; is of type Set or Type, T; is of type Prop and does not
contain any product or dependent inductive type, and ¢; are terms. In the fol-
lowing, the terms 7; will be called the premises of the constructor, whereas the
term (d ¢, ... tp) will be called the conclusion of the constructor. We impose
the additional constraint that 7T; is a fully applied logical inductive type, i.e. T;
has the following form:

di tip ... tip,i

! In CIC, parameters are additional arguments, which are shared by the type of the
inductive definition (type 7) and the types of constructors (defined in I7).

where d; is a logical inductive type, t;; are terms, and p; is the arity of d;.
An inductive type verifying the conditions above is called a logical inductive
type. We aim to propose an extraction method for this kind of inductive types.

3.2 Mode consistency analysis

The purpose of the mode consistency analysis is to check whether a functional
execution is possible. It is a very simple data-flow analysis of the logical inductive
type. We require the user to provide a mode for the considered logical inductive
type, and recursively for each logical inductive type occurring in this type.

Given a logical inductive type I, a mode md is defined as a set of indices
denoting the inputs of /. The remaining arguments are the output arguments.
Thus, md C {1,...,ar}, where ay is the arity of I. Although a mode is defined
as a set, the order of the inputs in the logical inductive type is relevant. They
will appear in the functional translation in the same order.

In practice, it is often the case to use the extraction with, either a mode
corresponding to all the arguments except one, called the computational mode, or
a mode indicating that all the arguments are inputs, called the fully instantiated
mode. The formalization below will essentially deal with these two modes with
no loss of generality (if more than one output is necessary, we can consider that
the outputs are gathered in a tuple).

In order to make functional computations possible, some premises in a con-
structor may have to be reordered. It will be the case when a variable appears
first in a premise as an input and as an output in another premise written after-
wards. For a same logical inductive type, some modes may be possible whereas
some others may be considered inconsistent. Different mode declarations give
different extracted functions.

Given M, the set of modes for I and recursively for every logical inductive
type occurring in I, a mode md is consistent for I w.r.t. M iff it is consistent
for I'. (i.e. all the constructors of I) w.r.t. M. A mode md is consistent for
the constructor ¢ of type II]" 2, : X;. 17 — ... = T, = T wrt. M, where
T =dt ... tp,iff there exist a permutation 7 and the sets of variables S;, with
1=0...m,s.t.:

So = in(md, T);

in(Mmzj, Trj) € Sj—1, with 1 < j < m and mr; = M(name(T,,));

S; = Sj_1Uout(myj, Trj), with 1 < j < m and my; = M(name(Tx;));
out(md,T) C S,,.

e

where name(t) is the name of the logical inductive type applied in the term ¢
(e.g. name(add n (S m) (S k)) = add), in(m,t) the set of variables occur-
ring in the terms designated as inputs by the mode m in the term ¢ (e.g.
in({1,2}, (add n (S m) (S k))) = {n,m}), and out(m,t) the set of variables
occurring in the terms designated as outputs by the mode m in the term ¢ (e.g.
out({1,2}, (add n (S m) (S k))) = {k}).

The permutation 7 denotes a suitable execution order for the premises. The
set So denotes the initial set of known variables and \S; the set of known variables
after the execution of the mj*" premise (when Ty, Tyo, ..., Tr; have been
executed in this order). The first condition states that during the execution of T
(for the constructor ¢) with the mode md, the values of all the variables used in
the terms designated as inputs have to be known. The second condition requires
that the execution of a premise T; with a mode m; will be performed only if the
input arguments designated by the mode are totally computable. It also requires
that m; is a consistent mode for the logical inductive type related to T; (we have
constrained 7; in the previous section to be a fully applied logical inductive
type). According to the third condition, all the arguments of a given premise T;
are known after its execution. Finally, a mode md is said to be consistent for ¢
w.r.t. M if all the arguments in the conclusion of ¢ (i.e. T) are known after the
execution of all the premises.

We have imposed some restrictions on the presence of functions in the terms
appearing in the type of a constructor. To relax these conditions, such as ac-
cepting functions in the output of the premises (see Section 5), in the step j,
we should verify that the function calls are computable, that is to say their
arguments only involve known variables (belonging to S;_1).

To illustrate the mode consistency analysis, let us consider the logical induc-
tive type that specifies the big step semantics of a small imperative language.
The evaluation of commands is represented by the relation s k. 4 : s/, which
means that the execution of the command i in the store s leads to the final store
s’. This relation has the type store — command — store — Prop, where store
and command are the corresponding types for stores and imperative commands.
For example, the types of the constructors for the while loop are the following:

whiley : (ske b:true) = (stkei:s') = (8 Fewhilebdoi:s") —
(s ke while b doi:s")
whiles : (ske b: false) — (st while b doi:s)

where given a store s, an expression ¢ and a value v, s I t : v represents the
evaluation of expressions, i.e. the expression ¢ evaluates to v in the store s. For
clarity reasons, we do not indicate the universally quantified variables, which are
the stores s, s’ and s”, the expression b and the command <.

If the mode {1,2} is consistent for . then the mode {1,2} is consistent for
both while constructors of .. But considering the typing relation of the simply
typed A-calculus I' -t : 7, denoting that ¢ is of type 7 in context I" and where
I' is a typing context, t a term and 7 a type, the mode {1,2} is not consistent
for this relation. Actually, this mode is not consistent for the typing of the ab-
straction; the type 7 in the premise, considered here as an input, is not known
at this step (11 ¢ So):

abs: (Ly(x:m)bFe:im) = (I'FAre: 1 — 72)

In the following, we will ignore the permutation of the premises and will
assume that all the premises are correctly ordered w.r.t. to the provided mode.

3.3 Code generation

The functional language we consider as target for our extraction is defined as
follows (mainly a functional core with recursion and pattern-matching):

e u=ux || C™|fail |if e; then eg else e3 | €1 €2 | fun z— e
| rec fz—el|letz =¢e1ines| (e1,...,ep)
| match e with | gpati— ey ... | gpat,— en

gpat = pat | pat when e
pat ==z | C™ | C™ pat | (paty,...,paty) | _

where ¢" is a constant of arity n, to be distinguished from C", a constructor of
arity n. Both constants and constructors are uncurrified and fully applied. More-
over, we use the notations e e3 ... e, for ((e1 e3)...e,),and funzy ... x,— €
for fun z1— ...fun z,— e (as well as for rec functions).

Given I = Ind(d: 7,I,), a logical inductive type, well-typed in a context I,
and M, the set of modes for I and recursively for every logical inductive type
occurring in I, we consider that each logical inductive type is ordered according
to its corresponding mode (with the output, if required, at the last position), i.e.
if the mode of a logical inductive type J is M(J) = {n1,...,ns}, then the nt"
argument of J becomes the first one and so on until the n}* argument, which
becomes the ¢/} one, with ¢; = card(M(J)). The code generation for I, denoted
by [I]r,m, begins as follows (we do not translate the type 7 of I in I" since this
information is simply skipped in the natural semantics we propose for the target

functional language in Section 4):

[I]] _ funpl pCI_> [[Fc]][',./\/l,P; lfdgpc,
rm recdpr ... pe;— [Ie]r.m,p, otherwise

where ¢y = card(M(I)) and P = {p1,...,pe; }-
Considering I'. = {c1,...,cpn}, the body of the function is the following:

[[FCHF,M,P = match (pl7 e 7pCI) with
| lea]rom
..
| [en]raa
| _ — default; ,,

where default; o is defined as follows:

false, if ¢c; = ay,

defaultr, e = {fan, it e; =ar—1

where ¢; = card(M(T)) and ay is the arity of I.
The translation of a constructor ¢; is the following (the name of ¢; is skipped
and only its type is used in this translation):

[[Ci]]p’M = [[H;h:l Tij: Xij~Ti1 — ... = Timi — (d tit ... tipi)]]F,M
([tal, - []) = [T — -0 = Timi [r Moconty pus
if ti1,..., %, are linear,
([es(t:i)], - - -5 [oi(tic,)]) when guard(o;) —
[Ti1 — ... = Tim,]r, Micont; pi» Otherwise
where o; is a renaming s.t. o;(¢;1),...,0i(tic;) are linear, guard(o;) is the
corresponding guard, of the form z;;, = o;(z;;,) and ... and z;;, = o;(25,),
with dom(o;) = {zij,,..., 25} and 1 < 5, < n;, Il = 1...k, and conty rq is

defined as follows:

cont true, if ¢c; = ay,

LM = .

M Htimﬂ’ if cr=ay—1

The terms t;1, . . . , t;c, must only contain variables and constructors, while t;,

(if ¢ = ay —1) can additionally contain symbols of functions. The corresponding
translation is completely isomorphic to the structure of these terms and uses the
regular extraction, presented in [6]. Moreover, we consider that the terms ¢, and
t;, are not unifiable, for i,j = 1...n and k = 1...¢; (otherwise, a functional
extraction may not be possible, i.e. backtracking is necessary or there are several
results).

The right-hand side of the pattern rules is generated with the following
scheme:

[Tz — ... jjimi]]F,M,contIYM =
conty agq, if § > my,

if [dij tiji- - tije,,] then [Tigii1) = - = Tim,] Mconts aa
else defauItLM, if j <m,; and Cij = G5,

match [[dlj tijl . tijcijﬂ with
‘ [[tijaijﬂ — [[Ti(j+1) . Emi:ﬂpvacontI,M
| _ — defaulty o, if j <my; and ¢;; = a;; — 1
where Tij = dij tijl . tijaija Qg is the arity of dij and Cij = card(M(F(d”)))
We consider that the term ;5,,; is linear and does not contain computed variables

or symbols of functions when ¢;; = a;; — 1 (in this way, no guard is required in
the produced pattern).

4 Soundness of the extraction

Before proving the soundness of the extraction of logical inductive types, we need
to specify the semantics of the functional language we chose as a target for our
extraction and presented in Section 3. To simplify, we adopt a pure Kahn style

big step natural semantics (with call by value) and we introduce the following
notion of value:

vu=c | CO] Ac | fail | <z~ e, A> | <z~ e, A>pec(p) | (15, 0n)

where A is an evaluation context, i.e. a list of pairs (z,v), and A¢ is a set of
values of the form C™ (vy,...,v,). In addition, we introduce a set A, of tuples
of the form (¢™,v1,...,v,,v), with n > 0.

An expression e evaluates to v in an environment A, denoted by the judgment
A epw, if and only if there exists a derivation of this judgment in the system
of inference rules described in Appendix A (to save space, we do not include the
corresponding error rules returning fail).

Given I, a logical inductive type, well-typed in a context I"; and M, the set
of modes for I and recursively for every logical inductive type occurring in I, we
introduce the translation (and evaluation) of the context I" w.r.t. the logical in-
ductive type I and the set of modes M. A context is a set of assumptions (z : 7),
definitions (z : 7 := t) and inductive definitions Ind(d : 7,I;), where z and d
are names, 7 a type, t a term and I, the set of constructors. The translation
of I' wr.t. I and M, denoted by [I']; am, consists in extracting and evaluat-
ing recursively each assumption, definition or inductive definition occurring in I
(thus, this translation provides an evaluation context). For assumptions, defini-
tions and inductive definitions which are not logical inductive types, we use the
regular extraction, presented in [6]. Regarding logical inductive types, we apply
the extraction described previously in Section 3.

The soundness of our extraction is expressed by the following theorem:

Theorem (Soundness). Given I = Ind(d : 7, 1), a logical inductive type, well-
typed in a context I, and M, the set of modes for I and recursively for every
logical inductive type occurring in I, we have the two following cases:

—cr = ar: if [Tlim B Uleom (6] - [te,] > true then the statement
I'Edty...t., is provable;

—cr=ar =L f [Llam b [Ilrom [ta] - - [te,] >v # fail then there exists t s.t.
[t] = v and the statement I'+d ty...t., t is provable.

where c; = card(M(I)), ay is the arity of I, and ty ...1t.,, t are terms.

Proof. The theorem is proved by induction over the extraction. We suppose that
AF[Irm [t]-- - Tte, > v, with A = [I']; m and either v = true if ¢; = ay, or
v # fail if ¢; = ay — 1. Using the definition of [I]r a¢ given in Section 3 and the
rules of Appendix A, this expression is evaluated as follows:

AF[I] s < pe [Lrmp, A>, if d & T,
M <p1 ... Pop ™ [[Fc]]r7M,p,A>,ec(d) = ¢, otherwise

where P = {p1,...,pe, }-

The arguments are also evaluated: A F [t1] > v1,..., AF [te,] > ve,. Using
the definition of [I.]r s, p, we have the following evaluation:

match (v1,..., v,) with
| [ealr
PAYR SN
| [en]ran
| _ — default; ,,

where Ay is defined as follows:

Ay = Aa(plvvl)v"‘v(p617UcI)7 lfdg-l—‘m
b A, (d,c), (p1,v1)y- s (Pess Ve,), otherwise

We know that either v = true or v # fail (according to cy); this means that
there exists 7 s.t. the pattern of [c¢;]r s matches the value (v1,...,v,,). Using
the definition of [¢;] a1, we have to evaluate:

Ap - [[Til — ... Timi]]F,M,contl,M >v (1)
with A, = Ay, A;, where A; has the following form (by definition of filter,):

A — { mguAb (’Ut, ([[til]]; ey [[tiq]]))v if til; ce ,ticl ‘are linear
! mgu a, (ve, ([oi(tin)], .. ., [o4(tic,))), otherwise

where v; = (v1,...,9,). In addition, we have A, F guard(o;) > true if
ti1,--.,tic, are not linear.

The reduction of our extraction language is weaker than the one defined for
CIC; in particular, this means that we have: given A = [I']; m, a term ¢ and
a value v # fail, if A F [t] > v then there exists a term ¢’ s.t. [t'] = v and
I' =t =1, where = is the convertibility relation for CIC. Moreover, considering
A =[I'lrm; a term t and a value v # fail, if o = mgu 4 (v, [¢]) then there exist
t" and & s.t. [t'] = v, dom(5) = dom(c), [6(x)] = o(zx) for all € dom(5), and
o = mgup(t',t). Using these two remarks, there exists A; as described above
S.t.:

F"A_i(dtil...tiq)E(dtl...t51> (2)

Note that we can consider A, = A, since the variables p;, i = 1... ¢y, do not
occur in I; actually, these variables are just used for the curryfication of [I]r 1.
Note also that this unification between (d t;1 ...t;.,;) and (d t1...t.,) may be
total or partial according to ¢y (if ¢; = ay or ¢ = ay — 1).

Regarding the arguments of ¢;, we have to consider another property: given
a context Ag, if Ay, Aq F [Ty — ... = Ty,] Mcont; o > v then there ex-
ists a context A, DO A, st. I' = Al A;T;; is provable for j = 1...m;, and
A,, Al F conty aq > v. This property is proved by induction over the product
type. Using the definition of [T;1 — ... — Tim,]r,m, we have three cases:

— j>m Ay, Ay Fconty p>v and A = A.

= J <my, ¢ = ayj:

if [[dU tijl .. tZJCU]] then
Apa A, F [T;(jjtl) — .. jvimi]]F,M,contIYM >v
else default; g

Since either v = true or v # fail, we have A,, Ay = [dij tij1 ... Lije,,] > true
and the then branch is selected. By hypothesis of induction (over the sound-
ness theorem), this means that I" - Aaﬁiﬂj is provable. Next, we have the
evaluation Ay, Ay = [Tij41) = ... — Timiﬂp’Mycont_IyMD v and by hypoth-
esis of induction, there exists A, O A, s.t. I' = Al A; Ty is provable for
k=j+1...m;, and A,, A, F conty p>v. As A, D A, ' A_flA_iTij is
also provable.

= J < mi, ¢ = a; — Lt

match [[dlj tijl . tijCij]] with
Apa Aa F | [[tijaij]] — [[Ti(j+1) — ... Timi]]F,M,contI,M >v

I defaulty g
Since either v = true or v # fail, we have Ay, A, = [di; tiji .. . tije, Jov" # fail
and the pattern [t;;,,,] matches v’. By hypothesis of induction (over the
soundness theorem), this means that I' - A, A;T;; is provable. Next, we
have the evaluation AP,A; F Ty = -+ = Tim,], Mocontr o > v, With
A, = Ag, Apy and A, = mgup 4, (V' [tija,;])- By hypothesis of induction,
there exists A, 2 A} s.t. ' AL ATy, is provable for k = j +1...m;, and
Ap, Al b conty p>v. As A, D A T'= AL ATy is also provable.

Using (1), (2) and the above property (with the empty context for A,), there
exists a context A, st. I' F A;AiTij is provable for j = 1...m;,,
I+ A;Ai(d tir ... tic,) = (d t1...te;) and A,, A} + contyag > v. We distin-
guish two cases:

— cr = ay: conty pq = true and the constructor ¢; can be directly applied to
prove I'd ty...t.,.

— cr = ay—1: we have Ay, A} = [t;p, [>v. There exists a term ¢, s.t. [t}] =v
and I' F A_;;A_itipi = t/ipi‘ Thus, '+ A_;A_l(d ti1--. tic; tipi) = (d t1... tc; t;pi)
and the constructor ¢; can be applied to prove I'=d ¢y ... ¢, t;pi.

5 Implementation and optimizations

5.1 Implementation

A prototype has been implemented and integrated to the Coq [10] proof assistant.
This implementation follows what has been described in Section 3 and is plugged
into the regular extraction mechanism of Coq so that it can produce code for the

same (functional) languages, i.e. OCaml, Haskell and Scheme. As an example, let
us consider the addition predicate presented in Section 2 with an extraction to
the OCaml language [11]:

Coq < Inductive add : nat — nat — nat — Prop :=
Coq < | addO : forall n, add n O n
Coq < | addS : forall n m p, add n m p — add n (S m) (S p).

Coq < Extraction Logical add [1 2.
(*x val add : nat — nat — nat *x)

let rec add p0 pl =
match (p0, pl) with
| (n, O) = n
| (n, Sm) »letp=addnminSp
| _ — assert false

This implementation should be part of the forthcoming version of Coq, and
currently, the development in progress is available on demand (sending a mail
to the authors).

5.2 Optimizations

Conclusion inputs In Section 3, we described the translation of a logical in-
ductive type when rules do not overlap, that is when the types of the conclusions
do not unify. However, we can implement some heuristics to overcome some of
these cases. Let us consider the example of the while loop, seen in Section 3:

Inductive exec : store — command — store — Prop := ...
| whilel : forall (s sl s2 : Sigma) (b : expr) (¢ : command),
(eval s b true) — (exec s ¢ s1) — (exec s1 (while b do ¢) s2) —
(exec s (while b do ¢) s2)
| while2 : forall (s : Sigma) (b : expr) (¢ : command), (eval s b false) —
(exec s (while b do ¢) s).

These two constructors overlap: the types of their conclusion are identical
up to renaming. A Prolog-like execution would try to apply the first rule by
computing the evaluation of the boolean expression b and matching it with the
value true. If the matching fails, the execution would backtrack to the second
rule. However, in this case, the execution is completely deterministic and no
backtracking is necessary. In fact, we can discriminate the choice between both
constructors thanks to their first premise. We introduce a heuristic to handle
such cases efficiently. It requires the ability to detect common premises between
both overlapping rules and to discriminate w.r.t. syntactic exclusive premises (p
and —p, values constructed with different constructors of an inductive type, for
example).

For the while loop example, the extracted function with the mode {1,2} in-
volves only one case in the global pattern-matching to be able to handle correctly
the execution:

let rec exec s ¢ = match s, ¢ with ...
| s, while(b,c) —
(match (eval s b) with
| true — s
| false —
let s1 = exec s ¢ in
let s2 = exec sl (while (b, c¢)) in s2)

Premise outputs In the formalization, we also assumed that the outputs of the
premises do not contain computed variables. Consequently, we cannot translate
rules where constraints exist on these outputs, which is the case for the following
constructor that describes the typing of a conditional expression in a logical
inductive type named typecheck, when the mode {1,2} is specified:

Inductive typecheck : env — expr — type — Prop := ...
| if : forall (g : env) (b, el, €2 : expr) (t : type),
(typecheck g b bool) — (typecheck g el t) — (typecheck g €2 t) —
(typecheck g (if b then el else €2) t).

There is no difficulty to adapt the translation for such cases. Once the non-
linearity between premise outputs has been detected, we use fresh variables and
guards as follows:

let rec typecheck g e = match g, e with ...
| g, if (b, el, e2) —
(match typecheck g b with
| bool — let t = typecheck g el in
(match typecheck g e2 with

| t” whent' =t —t
| _ — assert false)

| _ — assert false)

In the same way, it is also possible to deal with nonlinearity or symbols of
functions in the output of a premise.

6 Conclusion

In this paper, we have presented an extraction mechanism in the context of CIC,
which allows us to derive purely functional code from relational specifications
implemented as logical inductive types. The main contributions are the formal-
ization of the extraction itself (as a translation function) and the proof of its
soundness. In addition, a prototype has been implemented and integrated to the
Coq proof assistant, whereas some optimizations (relaxing some limitations) are
under development.

Regarding future work, we have several perspectives. First, we aim to prove
the completeness of our extraction (the mode consistency analysis should be
used in this proof). Concerning our implementation, the next step is to manage
large scale specifications, with, for example, the extraction of an interpreter from

a development of the semantics of a programming language (in Coq, there are
many developments in this domain). Another perspective is to adapt our mech-
anism to produce Coq functions, taking benefit from the new facilities offered
by Coq to define general recursive functions [10]. These new features rely on the
fact that the user provides a well-founded order establishing the termination of
the described function. Provided the mode and this additional information, we
could extract a Coq function from a logical inductive type, at least for a large
class of logical inductive types (e.g. first order unification, strongly normalizable
calculi, etc). Finally, the mode consistency analysis should be completed by other
analyses like determinism or termination. The logical programming community
has investigated abstract interpretation to check this kind of operational proper-
ties [5]. Similar analyses could be reproduced in our case. We could also benefit
from results coming from term rewriting system tools.

References

1. Isabelle Attali and Didier Parigot. Integrating Natural Semantics and Attribute
Grammars: the Minotaur System. Technical Report 2339, INRIA, 1994.

2. Stefan Berghofer and Tobias Nipkow. Executing Higher Order Logic. In Paul
Callaghan, Zhaohui Luo, James McKinna, and Randy Pollack, editors, TYPES,
volume 2277 of Lecture Notes in Computer Science (LNCS), pages 24-40. Springer,
December 2000.

3. Patrick Borras, Dominique Clément, Thierry Despeyroux, Janet Incerpi, Gilles
Kahn, Bernard Lang, and Valérie Pascual. Centaur: the System. In ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software Devel-
opment Environments (PSDE), volume 24(2) of SIGPLAN Notices, pages 14-24,
Boston (MA, USA), November 1988. ACM Press.

4. Catherine Dubois and Richard Gayraud. Compilation de la sémantique naturelle
vers ML. In Pierre Weis, editor, Journées Francophones des Langages Applicatifs
(JFLA), Morzine-Avoriaz (France), February 1999.

5. Manuel V. Hermenegildo, German Puebla, Francisco Bueno, and Pedro Loépez-
Garcia. Integrated Program Debugging, Verification, and Optimization using Ab-
stract Interpretation (and the Ciao System Preprocessor). Science of Computer
Programming, 58(1-2):115-140, 2005.

6. Pierre Letouzey. A New Extraction for Coq. In TYPES, volume 2646 of Lecture
Notes in Computer Science (LNCS), pages 200-219, Berg en Dal (The Nether-
lands), April 2002. Springer.

7. David Overton, Zoltan Somogyi, and Peter J. Stuckey. Constraint-based Mode
Analysis of Mercury. In Principles and Practice of Declarative Programming
(PPDP), pages 109-120, Pittsburgh (PA, USA), October 2002. ACM Press.

8. Mikael Pettersson. A Compiler for Natural Semantics. In Tibor Gyimothy, editor,
Compiler Construction (CC), volume 1060 of Lecture Notes in Computer Science
(LNCS), pages 177-191, Linkoping (Sweden), April 1996. Springer.

9. Robert F. Stérk. Input/Output Dependencies of Normal Logic Programs. Journal
of Logic and Computation, 4(3):249-262, 1994.

10. The Coq Development Team. Coq, version 8.1. INRIA; November 2006.
Available at: http://coq.inria.fr/.

11. The Cristal Team. Objective Caml, version 3.09.3. INRIA, September 2006.
Available at: http://caml.inria.fr/.

12. Alberto Verdejo and Narciso Marti-Oliet. Executable Structural Operational Se-
mantics in Maude. Journal of Logic and Algebraic Programming, 67(1-2):226-293,
2006.

A Semantic rules of the extraction language

(x,v GAVar

AFzxz>o mfail
AT &P om0 T constro
AlFe >y Al e, >uy, (c”,v17...,vn7v)€Ac
AFC (e1,...,en)Dv const,,
AFepuy ... AFeypv, C" (vl"”’v")eAcconstrn

AFC" (e1,...,6q)>C" (V1,...,0,)

AbFebtrue Al ey Al er>false Al es3>us

AFif e; then e; else e3> vg ifirue AFif e then e; else e3> v3 iffalse
AFfun z—ep> <z~ e, A> fun Abrec fa— eb <x~ e, A>pec(y) rec
Al e > A,(x,vl)l—egbvglt AFe>vy ... Al—enl>vn-|-u le

AFlet z = e1 in ea > vy € AF(e1,...,en) b (V1,...,0p) P

Abep<z~e3, A> Abespvy A (z,v2) Fespug
App
Al e eg>ug

AbFeb<z~re3,A> sy =c Abeabvy
Av(fac)7(x77)2) F63>U3
Al e eg>ug

Apprec

AFevv Ailtera(v, gpat;) = A;
filtera(v, gpat;) =fail, 1 <j<i A /A ey,
AF match e with | gpati— ey ... | gpat,— e, >v;

match

A,, if gpat = pat and mgu 4 (v, pat) = A,,

A,, if gpat = pat when e, mgu 5 (v,pat) = A,
and A, Ay, F e true,

fail, otherwise

with filter o (v, gpat) =

D.3 PAPER 3: A MAPLE MODE FOR COQ 109

D.3 PAPER 3: A MAPLE MODE FOR COQ

This paper is related to Chapter 3 and has been published in [52].

Article Submitted to Journal of Symbolic Computation

Dealing with Algebraic Expressions
over a Field in Coq using Maple*

DAVID DELAHAYE!! AND MICAELA MAYERO¥2

LCPR, CNAM, Département d’Informatique, Paris, France
2PPS, Université Denis Diderot (Paris 7), Paris, France

Abstract

We describe an interface between the Coq proof assistant and the Maple
symbolic computation system, which mainly consists in importing, in Coq,
Maple computations regarding algebraic expressions over fields. These can
either be pure computations, which do not require any validation, or com-
putations used during proofs, which must be proved (to be correct) within
Cog. These correctness proofs are completed automatically thanks to the
tactic Field, which deals with equalities over fields. This tactic, which
may generate side conditions (regarding the denominators) that must be
proved by the user, has been implemented in a reflexive way, which ensures
both efficiency and certification. The implementation of this interface is
quite light and can be very easily extended to get other Maple functions (in
addition to the four functions we have imported and used in the examples
given here).

1. Introduction

Computer Algebra and Theorem Proving are two distinct domains of theoretical
Computer Science, which are quite wide and involved in many distinct appli-
cations. These two domains have their own scientific communities, which seem
to be also rather distinct from each other and have little interaction. Actually,
Computer Algebra focuses on (symbolic) computation whereas Theorem Proving
focuses on validation and, basically, that does not seem to be related. However,
over the last 5 years, the situation has begun to change and some people are in-
creasingly interested in making these two worlds communicate. The fact is that

tDavid.Delahaye@cnam fr, http://cedric.cnam fr/~delahaye/.
{Micaela.Mayero@pps.jussieu.fr, http://www.pps.jussieu.fr/“mayero/.

*This work has been realized within the Programming Logic Group of the Chalmers Uni-
versity of Technology (Department of Computer Science, Gothenburg, Sweden).

1

D. Delahaye & M. Mayero: A Maple mode for Coq 2

Computer Algebra and Theorem Proving are quite complementary, especially
regarding their respective weak points. If we consider a Computer Algebra Sys-
tem (CAS), there is no notion of consistency (we are only interested in the power
of computation) and it is quite trivial to perform false computations, which ob-
viously have no sense. For example, in the Maple system [8], if we consider the
equation a = 0, we can derive directly that 1 = 0 asking for the division and the
simplification by a of the equation. Here, the first equation is valid, but we can-
not divide it by a because a is equal to 0. Maple does not make any remark and
performs the division. Maple supposes that the user knows what he/she is doing
and in this trivial example, it seems quite clear that we could have been a little
more careful before asking for this division by 0. However, in some more signif-
icant examples, this kind of false computations could very easily occur without
being noticed by the user and obtaining a wrong result could have more serious
consequences. Of course, this is not specific to Maple and could apply to many
other CASs. In such a case (as well as in many others), Deduction Systems (DSs)
can clearly bring a solution. For example, in the Coq proof assistant [24], it is
impossible to derive 1 = 0 from a = 0. Indeed, the division by a is performed
by means of a lemma which makes appear explicitely the side condition over a.
Thus, a must not be equal to 0 and this cannot be proved.

Conversely, efficient computations are, in general, rather difficult to perform in
a proof system. In a DS, it is as easy to crash the system during a big computation
as it was to derive false propositions in a CAS. As an example, still in Coq, if
we try to compute 100 x 1000, we can notice that it is quite time-consuming
(about 20s on a Sun UltraSPARC 450 MHz with a native compiled version of
Coq), whereas the computation of 1000 x 1000 saturates the stack. Again, this
is not specific to Coq and this could apply to some other DSs!. In the same
way as for the previous wrong derivation, CASs can bring a solution to these
problematic computations. For example, Maple realizes these two computations
immediately (less than a second) on the same machine.

All these examples emphasize that, as said previously, CASs are dedicated
to computation whereas DSs are dedicated to validation. But, these examples
also show that these domains are complementary because computation (resp.
validation) is clearly a weak point of DSs (resp. CASs). So, there is a real interest
to be gained in making them interact. This could be done in several ways: to
import validation in CASs, to import computation in DSs or, more ambitiously,
to build a unique system with both (efficient) computation and validation. In
this paper, we focus on the second way, i.e. to import computation in DSs, and
we want to share our experience of an interface between Coq and Maple. This
idea of interface was proposed some time after the design of the tactic Field [12]
for Coq, which can automatically prove equalities over fields. Beyond the fact

! Actually, in Coq and in most of DSs, there exist more efficient numbers (based on a binary
coding) which can be seen as dedicated to computations. However, the recursion scheme is
not the usual one and the proofs are less natural with these numbers (which are not really
appropriate for reasoning).

D. Delahaye & M. Mayero: A Maple mode for Coq 3

that this tactic has considerably improved the possibility of Computer Algebra
development in Coq, it has also made it possible to import computations from
some external CASs (not only Maple) and to validate them automatically, so
that it is almost transparent for the user, who has the impression of performing
only a computation. Thus, with this interface, we can use, in Coq, some Maple
functions regarding expressions over fields and the computations coming from
these functions are systematically proved (to be correct) by the tactic Field.
This work presents a concrete realization and thus contributes to showing the
effectiveness of general methods describing the interaction between CASs and
DSs (see [4], for example). It should be noted that up to now, in this specific
context of CAS/DS, very few interfaces have been designed or at least, formally
presented in publications. Compared to some of these interfaces, the main novelty
of this paper consists in providing the corresponding automation in the DS to
automatically prove the external computations from the CAS. Indeed, we claim
that such a method is worth being applied in practice only if the automation (at
least partial) to verify the correctness of the imported computations has been
also developed.

2. The computation/proof paradigm
2.1. Computation vs proof

In Mathematics, there are two distinct traditions: an operational tradition and
a denotational tradition. For example, if we want to show that 2 + 2 = 4, the
question does not seem to be the same according to the two traditions. In an
operational way, the previous equation is actually not symmetric and this means
that we have to compute (or reduce) 2 + 2 to 4. In a denotational way, the
equation is really symmetric and this is a proposition that we have to prove
using the axioms of Arithmetics. Historically, Mathematics of Antiquity, coming
from Egyptian, Babylonian or Greek knowledge, was centered around opera-
tional methods and, little by little, these methods have been replaced by the
denotational view of Modern Mathematics. However, nowadays, with the grow-
ing development of Computer Science, we can no longer ignore the operational
tradition.

Thus, in a modern mathematical language, we must be able to show that
2 + 2 = 4 but also to transform the expression 2 + 2 into the expression 4. So,
this language must not only provide deduction rules, but also computation rules,
which are called rewriting rules. One of the simplest rewriting rules, which is, in
general, implicitly used, is the S-reduction, which simply consists in replacing
the formal arguments by their effective arguments. For example, if we apply the
function z,y — x + y to 3 and 4, we obtain the expression (x,y — = + y)(3,4),
which is computed by replacing x by 3 and y by 4 to get the expression 3 + 4.
If we want to further reduce the expression 3 + 4, we need other computation
rules (regarding the symbol +, in particular). Currently, one of the most inter-
esting theoretical frameworks which allows us to handle both deductions and

D. Delahaye & M. Mayero: A Maple mode for Coq 4

computations is certainly the deduction modulo [13]. In this formalism, thanks
to a congruence on propositions, deductions (the undecidable part) and compu-
tations (the decidable part) are clearly separated in a clean way. However, as far
as the authors are aware, no proof system, based on such a theory, has yet been
implemented. In the current other proof systems, the user has to apply explicit
computation rules when building proofs and it is more difficult to distinguish
computations from deductions.

2.2. Importing computation

In general, especially compared to programming languages, computations are a
weak point of proof systems, even if, in these tools, computations are realized
considerably faster than deduction checkings, i.e. means which allow us to build
a proof tree structure w.r.t. the underlying logic. This can be explained by the
fact that proof systems use essentially a pure functional specification language.
In particular, it is impossible to handle imperative features like, for example,
mutable objects or exceptions, which can be of great help when writing effi-
cient code. Moreover, to ensure consistency, proof systems must only deal with
functions which terminate. In some systems, the termination argument must be
explicitly given (as in PVS [19]) and in some others, the syntactical class of func-
tions are constrained in order to get the proof termination automatically (as in
Coq [24]). In every case, the user is a bit limited in the way of writing his/her
code in a language which is clearly not Turing-complete. In the same way, it is
quite difficult to handle partial functions, which can only be simulated.

Actually, all the previous features express that we cannot add any computation
rule to a logic system. We have to take care of the consistency of the system
because these rules are used not only for pure computations but also in proofs.
However, this is a real limitation because we may want to perform computations
outside a proof and, in this case, there is no special need for restriction regarding
the computation rules. To do so, a natural idea is to call external functions (w.r.t.
the proof system) which are only used for pure (i.e. not in a proof) and local
computations. In this case, the proof system is only interested in the result and
not in the function which makes the computation.

This method is quite general and the proof system can use functions from any
external tool. Moreover, the proof system only needs a very superficial knowledge
of the external tool in order to build the interface. In particular, this can be
applied to Computer Algebra which can provide very efficient procedures to any
proof system whereas it is quite useless, for the proof system developers, to know
how these procedures actually work. Thus, this principle can easily build bridges
between Theorem Proving and other very different domains, which may, in turn,
lead to a new computational behavior.

D. Delahaye & M. Mayero: A Maple mode for Coq 5

2.3. Validating computation

The previous method is a general idea to perform external computations in a
proof system but this cannot be used inside proofs. As said previously, to extend
these computations to proofs, we have to ensure that they do not break the
consistency of the proof system. To do so, we have to prove that every external
computation is correct w.r.t. the computation and deduction rules of the proof
system. This idea is currently well known and for example, in the context of CA,
[4] essentially proposes two approaches regarding this process of validation: a be-
lreving approach, where the correctness of the external computation is assumed,
i.e. added as an axiom, and a skeptical approach, where we have to establish the
correctness of the computation. Actually, there is also a third approach, called
the autarkic approach, where the proof assistant makes the computation on its
own. This last approach will not be discussed in this paper since we want to
import computations. As claimed in [3], the believing approach is unsatisfac-
tory because CASs may have some bugs but especially, as can be seen in the
introduction, some necessary side conditions may not be required. Thus, we will
have a clearly skeptical view in this paper. More precisely, let us consider the
following sequent:

Tk P(t)

where I is a context of hypotheses, P is a predicate and ¢ is a term. If we want
to transform ¢ using an external function fe,;, we have to use the contextual rule
of the equational logic, i.e.:

'tt=t TFP{) (=cont)
T F P(t) — Cont

where = is an equality (it could be either the syntactical equality, also called
Leibniz’s equality, or more generally a setoid equality) and ¢ = fe(t). Once this
rule has been applied, we can go on to the proof with the sequent I' - P(t'),
but we have also to prove that ¢ = #/, i.e. t = fex(t), which is the required
validation. To do so, there are two alternatives. Either there is a function of the
proof system, called gy, s.t. we can obtain, by computation gp¢(t) = fext(t) and
conclude using the reflexivity axiom of the equality, but in this case, the use of
fext is completely useless because we can use gy directly to transform ¢ (as said
previously, we are not interested in autarkic computations in this paper). Or
there is no function of the proof system which is extensionally equal to fe and
we have to prove ¢t = t' using the deduction rules. As already mentioned, the first
alternative will generally not occur because the proof system will call external
functions which do not already belong to its environment. The second option
is more realistic and shows very clearly the duality computation/proof. Indeed,
here, we make an external computation with fe.(¢f) and also a corresponding
proof t = fex ().

Regarding the proof of ¢ = #', it would be particularly interesting if it could

D. Delahaye & M. Mayero: A Maple mode for Coq 6

be completed automatically, even partially, so that the user really has the im-
pression of making a computation using an external function. However, even if
this proposition cannot be automatically proved, it is always worth calling the
external function which returns ¢' because, in every case, we use the external
tool as an oracle which provides a result.

2.4. Application to Coq and Maple

As said previously, even if it is easier, in a proof system, to verify that a com-
putation is correct than to make the computation itself, it is quite important to
automate this verification so that the user only sees the computation side of this
paradigm. Thus, this restricts the application of Theorem Proving to domains
which are decidable or at least partially decidable. Here, in the context of the Coq
proof assistant [24] (a direct descendent of LCF, one of the first proof systems),
we have designed a strategy (or a tactic), called Field [12], for reasons which
will be explained in section 3, which automatically proves equalities between
algebraic expressions over a field. As the problem is not decidable in general,
the tactic generates some conditions (typically that some expressions occurring
in inverses must not be equal to 0), that the user must prove manually. Even
though it was not one of the initial goals, this tactic has built quite a direct
bridge toward Computer Algebra Systems, which can perform various symbolic
computations over algebraic expressions, because it is now possible to call any
computation procedure of a CAS to get a result and to verify the correctness of
this result with this new tactic. As a Computer Algebra System, we have chosen
Maple [8] because, beyond the fact that Maple is both popular and easy to use, at
least for a beginner, it provides all the functions we would like to have in Coq and
it allows us to implement very quickly a light interface between the two systems
(see section 4). We will see that this cooperation between Coq and Maple makes
usual but also certified operations over algebraic expressions possible very easily
(the list of available operations can be extended quite quickly by the user) and
opens up, as a bonus, new possibilities regarding the automation of Coq in the
domain of Computer Algebra.

3. Presentation of the tactic Field

Before describing the interface between Coq and Maple, let us focus on the tactic
Field, which has made it possible to increase the automation of Coq in the
domain of Computer Algebra.

3.1. History and motivations

Initially, the tactic Field [12] was designed to automate many small parts of
proofs over the real numbers using the field structure. These parts of proofs
were small in the sense that they were quite trivial when considered from the
usual and informal mathematical point of view, but they turned out to be quite

D. Delahaye & M. Mayero: A Maple mode for Coq 7

tedious to build in a formal proof system. In particular, the idea was to deal
with the £/ proofs? involved in the theorems about limits and derivatives. As a
typical example, let us consider the derivative of the addition: given two functions
f and g, as well as their derivatives at zy, denoted f'(zo) and ¢'(zy) (we assume
that these two functions are both side differentiable at z,). By definition, the
two derivatives are expressed as follows:

T—T0 T — To

Using the theorem of limit addition, we obtain directly:

(f(x) — f(@o) | 9(z) - 9(150))

r — 29 r — Xy

fl($0) -+ gl(iL'()) = lim

I—TQ

Using the limit definition®, we have, for every domain D of R:

Ve >0, 30 > 0, Vo € D\xy, if |z — 29| < ¢ then

f(z) — f(xo) n 9(w) — g(mo)

T — 2y T — 2y

- (e + o)| <
Finally, we must show the following equality:

f(x) = f(=o) + 9(x) — g(zo) _ f(x)+g(zx) — (f(20) + g(20))

r — Xy r — Xy r — 2o

The equality above is quite trivial but the formal proof requires much more
work than expected. Indeed, we must reduce the left-hand side with the same
denominator and then we can show the equality over the numerators using dis-
tributivity, commutativity, etc. In Coq, 10 rewritings are needed to complete this
proof.

Initially, the tactic Field was implemented to deal with that kind of proofs
over the real numbers. Next, the tactic was generalized to handle every field (not

only R, but also C for example). The tactic is currently available in the latest
version of Coq (V7.3).

2¢/6 proofs are proofs using the explicit definition of limit, i.e. of the form: Ve > 0.35....

3Here, we have to get to the £/§ level even if it seems sufficient to perform the algebraic
manipulations in the argument of the limit because in the formalization made in Coq, the
z occurring in the limit is an abstract variable and it is not allowed to rewrite under an
abstraction.

D. Delahaye & M. Mayero: A Maple mode for Coq 8

3.2. Algorithm

The algorithm is based on the fact that there is already a decision procedure for
Abelian rings in the Coq system (tactic Ring [5; 6]). So, the idea is to minimize
the simplification operations in order to be plugged into the decision procedure
on Abelian rings as soon as possible. This essentially means that we simply have
to get rid of all the inverses involved in the equality to be solved.

To do so, we propose the following steps:

1. To transform the expressions z — y into = + (—y) and z/y into z % 1/y.

2. To look for the inverses involved in the equality in order to build a product of
these inverses.

3. To perform a full distribution in the left-hand side and the right-hand side of the
equality, except in the inverses.

4. To associate to the right each monomial, except in the inverses.

5. To multiply the left-hand side and the right-hand side of the equality by the
product of inverses (built in step 2), generating the side condition that all the
inverses must not be equal to 0.

6. To distribute only the product of inverses on the sum of monomials in the left-
hand and right-hand side without re-associating to the right.

7. To simplify the inverses in the monomials using the field rule zx1/z =1, if x # 0
and performing permutations of the monomial components if necessary, that is to
say if there are some inverses remaining and that the field rule cannot be applied®.

8. To loop to step 2 if there are some inverses remaining.

The first step allows us to limit the operations we have to deal with (we
get rid of the binary minus and the division which are not primitive in the
field definition) before reducing the problem to the ring level. Step 4 is clearly
not necessary, but rather more efficient, because this avoids a double recursive
call in the functions which handle these expressions. The last step, which may
involve further iterations, is justified by the possibility of having other inverses
in the inverses. After all these steps, we obtain an expression without inverses
and we only have to call the decision procedure for Abelian rings to conclude.
The correctness and the complexity of this algorithm will be discussed later in
subsection 3.4.

3.3. A complete example

Let us consider a small example of the evaluation of the previous algorithm
where it is needed to make a recursive call. Given z, y and z, three variables
over a field, we propose to show the following equality under the hypotheses that

x#0,y#0and z #0:

“Here, we do not have to verify that 2 # 0, because this condition has already been
generated during the step of multiplication by the product of all the inverses.

D. Delahaye & M. Mayero: A Maple mode for Coq

First, we transform the binary minus and the divisions:

L@t (ca)) =14 (=) %
z Y *

1
)
We build the product of inverses, we call p:
1
p=zx((yx)*y)

We perform a full distribution in the left-hand and right-hand sides of the
equality, except in the inverses:

1 1 1 1
—xx+—*((—1)*xz*) =14+ (=1)*z%—

We associate to the right each monomial, except in the inverses:
1 1 1 1
— %+ —*((—1) * (z * =1+ (-1 —

LT (DR) =1 (D)

Y

We multiply the left-hand side and the right-hand side of the equality by p
generating a correctness condition:

o ((y s) ey) s (ot L ()
zH((y*) xy)* (14 (=1)*
with 2 % ((y %) *y) # 0.

We distribute this product on the monomials without re-associating to the
right:

o ((y*3)xy)x(Gra)+as((y*7)xy)* (G (1) * (2=
o () wy) s Lo ((yxg)*y)x (1) = (2%

)

We simplify the inverses performing permutations if necessary:

L)) =
)

(s D) eyra+yx((-1) sa) =2 ((ye) xy) s 1+ a5y (1)

Some inverses are remaining (two occurrences of %) and we have to apply

the previous steps again. The new product of inverses, which we call p', is the
following:

D. Delahaye & M. Mayero: A Maple mode for Coq 10

Here, each member of the equality is already fully distributed and there is no
need to apply step 3. Next, we associate to the right each monomial:

v (Cxlyna) +yx (1) ea) = ox (ys (G [y 1) + o5 (v (1)

We multiply both sides of the equality by p’ generating another side condition:

2xly (xlysa)) 4y (<) #0) = 2% (e (s (* (ye) 2% (5 + (-1)

with z # 0.
We distribute p’ on the monomials without re-associating to the right:

oy (1)+ (1) 02) = (e () 2 (g2 (—1))

We simplify the inverses:

yx(yxa) +zx (yx (1) x2)) =z x (y* (y* 1)) + 2% (z x (y x (=1)))

Thus, we obtain an equality over an Abelian ring structure, which can be
solved calling the corresponding decision procedure. We have also two side con-
ditions (there are as many conditions as recursive calls of the algorithm), p # 0
and p’ # 0, which have to be proved manually (more precisely, they are not
proved automatically by the algorithm).

3.4. Implementation

An originality of the tactic Field is that it has been implemented in a reflex-
ive way. This particular coding ensures both efficiency and soundness. To fully
understand how this is possible, let us briefly recall what a reflection is.

To code a tactic in a formal proof system, there are globally two possible
options. An explicit coding using rewriting or a reflexive coding using reduction.
An explicit coding, also called LCF’s approach, may be very inefficient due to the
use of rewriting, which may be quite time-consuming but also space-consuming
in some systems based on Curry-Howard’s isomorphism®, where proofs are \-
terms, like in Coq, Lego [21] or Alfa [11], for example. A reflexive coding is an
alternative method, which is quite satisfactory according to these two criteria.
Indeed, rewritings are replaced by more efficient reduction steps and proof term
size is the same as the size of the goals to be proved.

5This isomorphism consists in the fact that it is possible to build a bijection between
propositions and types of a typed A-calculus, which implies a second bijection between proofs
and A-terms.

D. Delahaye & M. Mayero: A Maple mode for Coq 11

The reflection principle is the following: given a language of concrete terms
(typically any type of the system), say C, and a language of abstract terms
(typically an inductive type), say A. As it is not possible, in general, to handle the
terms of C' as we would like to (we may not be able to perform pattern-matching,
for example), the idea is to reflect a part of C into the language A, which is
supposed to be isomorphic to this part. The first step, called metaification®,
consists in converting terms of C into terms of A. More precisely, this consists,
for a term c of C, in building the term a of A such that [a], = ¢, where [.] is the
interpretation function from A to C' (which can be coded in the system), v is the
canonical map of the parts of C' which are not reflected and = is the syntactical
equality.

Next, we can handle the converted terms of A and we can write some transfor-
mation functions on A. To use these functions, we only have to prove correctness
lemmas, which, for example, given a transformation function ¢ from A to A, have
the following form: Va € A.[¢(a)], = [a],. In particular, this point means that,
in the reflection process, the tactic and its correctness proof cannot be dissoci-
ated, they are built simultaneously.

Finally, once this lemma has been applied, we only have to fully reduce the
expression in order to perform the transformation on the abstract term of A and
to re-obtain a concrete term of C.

The situation can be summarized by figure 1 and here is a small example to
better understand how this general scheme of reflection actually works:

Metaification
C A
Explicit i
coding Reflection ©
C A

[]

Figure 1: Reflection principle.

EXAMPLE 3.1 (HANDLING PROPOSITIONS): The probably best example of ob-
jects which can only be handled at the meta-logic level are basic propositions. For

6This word was coined by Samuel Boutin [6], but, in the literature, this step is also called
quotation or reification.

D. Delahaye & M. Mayero: A Maple mode for Coq 12

instance, let us consider the strateqy which replaces ® A T with ®, where ® is a
proposition and T is the universally true proposition. To write such a strategy
according to a reflective approach consists in reflecting a part of propositions,
actually N as well as T, using a concrete type (an inductive type). Let us call
T this concrete type, which is made of three constructors: and corresponding to
A, true to T and a last one to variables (these variables are mapped to proposi-
tions which are not reflected, i.e. propositions formed from V, = , etc). Now, the
strategy can be written as a function, we call S, over terms of T'; this is a quite
trivial recursive function working by usual pattern-matching. To be applied, this
strategy needs its correctness lemma (that is one of the main points of reflection’s
principle: the correctness of the strategy is established during the implementation
process), which is:
vt € T.[S@)]o = [t]

where [.] is the interpretation function of abstracted propositions of T into
usual propositions (as S, this is also a quite trivial recursive function working by
usual pattern-matching) and v is the canonical map of the parts which have not
been reflected during the metaification pass. Here, since we use equality between
propositions, we must remark that we need an extensionality axiom to prove this
lemma.

If we consider the expression ® AT = &, where ® is an arbitrary compli-
cated proposition, let us see how to apply the previous strategqy. First, we have
to metaified the expression (this is the only pass which requires to switch to the
meta-logic level) and we obtain:

[and(p, true)]p.ey = @
Next, we apply the correctness lemma of S (a simple rewriting):
[S(and(p, true))]p,ey = ©

We can apply the definition of S:

[Plip.ey = @

Finally, we apply the definition of [.] to get & = .

For further information regarding the use of reflection, see [5; 6; 15; 22; 18|.

Thus, with this very specific implementation, the proofs using Field can be
verified faster using only reductions and are smaller. Moreover, this reflexive
coding ensures the correctness of the tactic and the built procedure is then
certified. It is important to realize how this last point is fundamental because,
with a direct coding, it is not even possible to state the correctness inside the
proof system (indeed, this is a meta-statement which can only be verified outside
the system). Here, we provide an efficient but also valid tactic. For further details
regarding the correctness lemmas and the complexity of Field, see [12].

D. Delahaye & M. Mayero: A Maple mode for Coq 13

4. Interfacing Coq and Maple
4.1. Method

According to the paradigm described in section 2, we have imported, into Coq,
computations from Maple to build terms, in definitions for example, but also
to be used in proofs of propositions, called goals. Pure computations, i.e. not
used in proofs, can be realized with the following expression (we will see some
examples in section 5):

Eval < Maple function > in < Coq term >

which simply consists in applying the Maple function to the Coq term and
returning a new Coq term. Obviously, there is interfacing work to do between
Coq terms and Maple terms, which will be described in subsection 4.2. As said
in section 2, computations of this kind do not require any verification from Coq
(that is why they are called pure computations) and no tactic is called to build
any proof (even if the Maple function does not do what it was coded for, it cannot
break the consistency of Coq).

Computations which occur in proofs are called with the usual syntax of Coq’s
tactics as follows:

< Maple function > < Coq term >.

where we assume that we are in the proof editing mode and that the Coq term
has an occurrence in the goal we try to prove. If we call f, the Maple function, and
t, the Coq term, the effect of this "Maple tactic" on a goal of the form I' - P(t) is
to generate a subgoal I' - P(f(¢)), the user has to complete next, and a subgoal
I' -t = f(t), to verify, as seen in section 2, that the Maple function has given
a correct result. The latter subgoal is automatically solved by the application of
the tactic Field since, as said in subsection 2.4, we deal with Maple functions
which handle algebraic expressions over fields. As seen in section 3, applying
Field may generate side conditions (typically, that some expressions must not
be equal to 0) and, after applying this Maple tactic, the user may have to prove
more than one subgoal. Figure 2 gives a global view of how Maple computations
are used in Coq proofs.

The Maple functions dealing with algebraic expressions over fields which have
been exported are the following (we also give their informal and brief semantics
coming from Maple’s documentation):

Maple function Action

simplify Apply simplification rules to an expression
factor Factorize a multivariate polynomial
expand Expand an expression

normal Normalize a rational expression

D. Delahaye & M. Mayero: A Maple mode for Coq 14

Maple Coq

T+ P(t)
t

e

'+ P(t) THt=¢

Field

4

<side conditions>

Interface

Figure 2: Using Maple computations in Coq proofs.

In section 5, we will see some examples which give a more precise idea regarding
the behavior of these functions, but for further information, the reader can refer
to the Maple reference manual [8]. Syntactically, these functions are imported in
Coq with the same names where the first character has been capitalized giving
Simplify, Factor, etc. Currently, we only have functions with an arity of 1 (we
will see in subsection 4.2 that adding other functions is quite direct and very
easy for the user), but there is no specific difficulty in extending this interface
to functions with higher arities.

4.2. Implementation

Implementing the interface between Coq and Maple has been done quite quickly
and almost for free, essentially due to the reflexive coding of the tactic Field.
When we want to transform a Coq term ¢ with a Maple function, we use the
reflexive structure of field which has been created for Field and we perform a
metaification (see figure 1) to get a term t,ps. With this new term t,ps, which is
only an algebraic expression over a field, we build another concrete term tmaple,
expressed in the Maple syntax and which is completely isomorphic to Z,,s. Next,
we can call the corresponding Maple function to obtain a term t{vlap,e, which can

be directly transformed into a term ¢, of the reflexive structure. Finally, the

D. Delahaye & M. Mayero: A Maple mode for Coq 15

Lbs 18 interpreted by the function [[.] of figure 1 to re-obtain a Coq term ¢, which
can be used either as the result of a pure computation or in a proof.

To use the previous result, i.e. t coming from ¢, in a proof, we simply make a
cut of the equality ¢ = ' and we rewrite ¢ into ¢’ in the goal where t occurs. The
equality ¢ = t' is then proved by Field. This is done by the following short Coq
script:

Replace t with t’;[Idtac|Field].

where the tactic Replace makes the cut of t=t’ (we obtain two subgoals)
to rewrite t into t’ in the main subgoal, and the tactic Idtac leaves the goal
unchanged. The notation Tac; [Tac; | ... |Tac,] means that we apply the tactic
Tac to the current goal, Tac; to the first subgoal, ..., and Tac, to the nth subgoal.
Here, the first subgoal is the initial goal where t has been replaced by t’, which
is left identical by Idtac (this is the expected subgoal, which must be completed
by the user afterwards), and the second subgoal is the equality t=t’, which is
automatically proved by Field.

The whole implementation has been realized in a very light way. The interface
between Coq and Maple does not require a specific architecture and, in particular,
there is no transfer protocol, no use of sockets or other sophisticated communi-
cation systems, but only a simple pipe created by Coq for each call of a Maple
function. Of course, neither of the two systems has any information regarding
the state of the other one, but this is quite useless and when Maple is called,
there is no need for a specific context. Incidentally,we can also notice that the
roles of the two tools are asymmetric. Indeed, Coq is in charge and deals with
the interface. Maple is only called when Coq needs a computation, but Maple
cannot call Coq to verify a result in its own context.

The implementation of this interface is available as the Coq contribution
Chalmers/MapleMode, which can be found on the Coq web site: http://coq.inria.fr.
As just said, the implementation is quite light and the corresponding code is very
short with about 300 lines of ML. The contribution contains also some examples
of use for each imported Maple function.

5. Examples

Here, we give some examples of the new tactics Simplify, Factor, Expand and
Normal, now available in Coq. As seen previously, these tactics call the corre-
sponding Maple functions and we propose some examples where they can be used
either to prove a goal or only to compute a result. These examples are rather
small in order to show quite clearly how the new corresponding tactics work and
in particular, to understand when some side conditions are generated. A more
complete and realistic example can be found in appendix A.

To use Maple in Coq, we have to import the specific module Maple (the in-

D. Delahaye & M. Mayero: A Maple mode for Coq 16

terface) with the Coq command Require. If Maple is available on the machine
where Coq is running then the following heading appears:

Welcome to Coq 7.3 (May 2002)

Coq < Require Maple.

[Loading ML file maple.cmo ...

Coq is now powered by Maple

[Maple V Release 5 (Chalmers Tekniska Hogskola)]

I\~/1 v
INL /1o ====> <0,
\ MAPLE / ====> \VV/
ool ol > //

donel

The examples we give are over the field of real numbers. We suppose that the
module Reals has been imported, which allows us to use the whole real number
library and, in particular, to call the tactic Field instantiated for this field. This
module has a specific syntax and the real expressions are parenthesized by €.
The opposite of z, the inverse of x and =z # y are respectively noted -x, /x
and x<>y. Additionally, there are also a binary minus and a division, which are
represented by - and /.

5.1. Maple tactics
5.1.1. Simplify

We want to prove the following lemma, we call simp1, stating that for every real
number x and y, if x # 0 and y # 0 then:

x
(_+Q) zy—(rx+yy)+1>0
Yy T
After having entered the goal and assumed the hypotheses (tactic Intros),
we obtain the following goal:

simpl < Intros.

1 subgoal
x : R
y : R
H: ““x <> 0¢

HO : “‘y <> 0¢¢

CC(x/yry/x) *xky - (xkx+yry)+1 > 0°F

D. Delahaye & M. Mayero: A Maple mode for Coq

17

The most direct way of completing this goal is to simplify the left-hand side

term (7 + %) z.y — (z.z + y.y) + 1 with the new tactic Simplify as follows:

simpl < Simplify *‘(x/y+y/x)*x*y- (x*kx+y*y)+1‘¢.
2 subgoals

x : R
y : R
H: ““x <> 0°¢¢

HO: ((Y <> O((

((1 > o({

subgoal 2 is:
Cyrx <> 0¢¢

The tactic Simplify calls the Maple function simplify to get the simplified
term 1 and replaces it in the goal to obtain 1 > 0. We can notice that another
subgoal appears. This subgoal is generated by applying the tactic Field, which is
called to validate the previous replacement by proving the equality between the
initial and simplified terms, i.e. (% +%) z.y— (z.z+y.y)+1 = 1. This automatic
proof creates an additional goal requiring that the denominator product must
not be equal to 0, that is to say y x x # 0. These two subgoals are then completed

by very simple tactics on real numbers, respectively Sup0 and SplitRmult.

5.1.2. Factor

Regarding the tactic Factor, we can give the following example in which we

want to factorize the term:
a® + 3a*b + 3ab® + b*

factl < Intros.

1 subgoal
a:R
b: R

H: ““atb > 0¢¢

¢ Caxgka+3*akaxb+3kaxbxb+b¥bkb > 0°¢¢

factl < Factor ¢‘axaka+3*akaxb+3%axbxb+b*b*b¢*.

1 subgoal
a: R
b : R

D. Delahaye & M. Mayero: A Maple mode for Coq 18

“¢(atb)*(atb)*(atb) > 0¢¢

5.1.3. Expand
For the tactic Expand, let us consider the following example in which we want

to expand the term:

(a—b)(a+b)

expdl < Intros.
1 subgoal

a: R
b:R
H: ‘““a <> b

“¢(a-b)*(atb) <> 0°¢¢

expdl < Expand ‘‘(a-b)*(atb)‘‘.

1 subgoal
a:R
b: R

“‘akxat -(bxb) <> 0°¢¢

We can notice that the tactic Expand (actually, the Maple function expand)
expands and also simplifies the expression.

5.1.4. Normal

We may use the tactic Normal in the following example in which we want to
normalize the term:

.TEQ y2

(@ —-y)?* (z-y)?

In Maple, the normal function provides a basic form of simplification. It rec-
ognizes those expressions equal to zero which lie in the domain of “rational
functions”. This includes any expression constructed from sums, products and
integer powers of integers and variables. The expression is converted into the
“factored normal form”. This is the form numerator/denominator, where the
numerator and denominator are relatively prime polynomials with integer coef-
ficients. Thus, in Coq, let us try to prove that if x — y # 0 then the previous
expression is normalized into £¥:

z—y"

D. Delahaye & M. Mayero: A Maple mode for Coq 19

norml < Intros.

1 subgoal
x : R
y : R
H: ““x-y <> 0¢¢

Cxxx/ ((x-y)* (x-y)) -y*y/ ((x-y) *(x-y)) == (x+y)/(x-y) ‘¢

norml < Normal ¢‘x*x/((x-y)*(x-y))-y*y/((x-y)*(x-y))*¢*.

2 subgoals
x : R
y : R
H: ““x-y <> 0¢¢

Clary)*/ (xk) == (ery)/ (xey) ¢

subgoal 2 is:
COlxt —y)R((x+ -y)*(xt -y)) <> 0¢F¢

where the notation /a is just a syntactical abbreviation for the inverse, i.e.
1/a.

The left-hand side term of the equality in the first subgoal is the result returned
by Maple. The second subgoal has been generated by Field. Actually, we can
notice that, applying the algorithm of subsection 3.2, two denominators must
not be equal to 0, that is to say z — y and (z — y)?, even if it is redundant.

5.2. Maple evaluation

As seen previously in subsection 4.1, we can also perform only pure Maple com-
putations thanks to the command Eval...in. These computations do not need
to be proved and there is no guarantee that the results are correct but it is not
necessary to generate side conditions because the consistency of the system is
not endangered in any way. In this case, we just want to use Coq as a calculator
with the help of Maple.
For example, let us consider the computation of the following characteristic
polynomial:
—-1—=z 4 2
-5 T—x 5
7 -6 —6-—=2

We define the characteristic polynomial, we call carl, by expanding the de-
terminant w.r.t. the first column:

Coq < Definition carl [x:R] := Eval Factor in

D. Delahaye & M. Mayero: A Maple mode for Coq 20

Coq < CO-1-x)*((T-x)*(-6-x)+30)+5* (4% (-6-x)+12)+
Coq < Tx(20-2%(7-x)) ¢ ¢.
carl is defined

As we have factorized (with Factor) the previous development, we have a
definition carl which can be directly used to build the corresponding diagonal
matrix:

Coq < Print carl.
carl = [x:R]¢¢ -(x+ -1)*(x+ -2)*(x+3)°¢¢
: R->R

We can perform other computations, in exactly the same way, with the other
Maple functions that have been imported.

6. Conclusion
6.1. Summary

In this paper, several goals have been achieved:

e We have emphasized the paradigm computation/proof, which appears, for
example, in the opposition CAS/DS. In particular, it is apparent that no
concrete system (not only formalisms), which could handle both computa-
tion and deduction in a clean way, has been ever designed.

e In the context of the Coq proof assistant, we have presented the tactic
Field, which can automatically prove the equalities over fields. Regarding
the implementation, this tactic has been realized in a reflexive way, which
ensures both efficiency and certification.

e We have described a very light interface between Coq and Maple, which
allows us to perform Maple computations in Coq. These can be pure com-
putations, which do not require any validation, or computations used during
proofs, which are then automatically certified using the tactic Field.

e We have provided some examples of use (for each new Coq computation
based on a Maple function) with either pure computations (Eval...in) or
computations used during proofs (usual tactic call), which may generate
side conditions arising from the application of the tactic Field.

6.2. Related work

The idea of making CASs and DSs interact has been also explored by some
other authors. A study of this interaction can be found in [4] where, as seen in
section 2, several approaches (believing, skeptical and autarkic) are discussed.
This is a very general characterization of the communication of mathematical
contents between CASs and DSs so that any concrete interface between a CAS
and DS should, a prior:, fall into the scope of one of these approaches.

D. Delahaye & M. Mayero: A Maple mode for Coq 21

Other approaches, which differ from that put forward in this paper, consist
in providing CAS users with an interface with a DS to verify side conditions.
For example, in [1], the idea is to track the conditions, which are implicit in the
CAS, but which can make the result go wrong if they are ignored. In this case,
the CAS is Maple and the DS is PVS [19]. This view is quite different because it
is dedicated to CAS users and there is a graphic interface which is used to build
some proofs interactively without interacting directly with PVS. Moreover, the
PVS proofs must be completed manually (no automation is provided for a specific
Computer Algebra domain). In a similar way, another work [10] aims at using
the automated theorem prover Otter to discard trivial conjectures generated by
the HR theory generation tool [9] about Maple functions. Once these conjectures
proved, Otter leaves the interesting conjectures, which cannot be easily proved.

In more closely related approaches, the CAS is devoted to help a DS. For
instance, in [2], Maple is used to extend the power of rewriting of the Isabelle
theorem prover [20]. No proof obligation is generated and according to [4], the
interface is based on a believing principle (i.e., each rewriting using a Maple
computation is set as an axiom; obviously, this is managed by the Isabelle sim-
plifier at the meta-logic level and this is quite transparent for the user). Another
example is [16] consisting in an interface between HOL [14] and Maple, where
Maple is supposed to help HOL users to perform certain computations. This tool
is mainly dedicated to the domain of real numbers and Maple is called with the
two methods SIMPLIFY/FACTORIZE. The results returned by Maple are proved
in HOL (as mentioned in the title of the paper, this is a skeptical approach)
but not systematically so. In contrast to our approach, the imported functions
are not embedded in specific HOL tactics, which call Maple for computations
and prove the correctness of these computations automatically. In fact, the user
calls the Maple functions in HOL and, if he/she wants to use the results of these
computations in proofs, he/she has to prove their correctness either manually or
automatically (if there is a corresponding tactic). Finally, in the idea of integrat-
ing Computer Algebra into Proof Planning, [23| presents a concrete implemen-
tation where Maple is used to enhance the computational power of the Qmega
system [25|. The computations are checked by means of an external tool, which
provide protocol information to aid the verification in {2mega. This external tool
deals essentially with verifications involving arithmetic and for other kind of
verifications, it must be modified by integrating an appropriate algorithm.

6.3. Future work

An extension of this work could be to deal with other kinds of computations such
as limits, derivatives, etc. (these notions have already been formalized in Coq).
With this interface, these computations can already be quite easily imported
into Coq and if we also want to deal with them in proofs, it is always possible to
prove their correctness, at least manually. However, in the same way as for the
tactic Field, the idea would be to also develop the corresponding automation.

D. Delahaye & M. Mayero: A Maple mode for Coq 22

For example, if we denote f’, the derivative of f, we would like to provide a new
tactic which can automatically prove in Coq that f’ is the derivative of f, for
some specific forms of f, precisely as is done for algebraic expressions over a field
with the tactic Field.

Another application of this interface could be to use Maple to compute poly-
nomial ged’s. Currently, we are developing a decision procedure for first order
formulae over algebraic closed fields based on a method of quantifier elimination,
and as such methods require many ged computations, we plan to use Maple to
do so. The correctness proofs will also be automated using the tactic Field and
Bezout’s relation (the coefficients will be given by Maple). Once realized, a large
part of this procedure could be also reused to deal with real closed fields. It is
particularly interesting to finalize this work because it will mean that CASs can
be used in DSs not only to carried out some computations but also to enhance
the automation of such systems.

Finally, we would like to use a more general language to express the output
data coming from Coq. The idea would be to interface Coq with other CASs.
Currently, the data produced by the interface are quite ad hoc and can only be
parsed by Maple. A good choice could be to adopt languages like OpenMath [7]
or OMDoc [17], which seem to be emerging standards and already have bindings
with many existing CASs.

A. A complete example: quadratic forms

In this example, we propose to show the equality between two quadratic forms
where the right-hand side form is expressed in such a way that we can compute
the rank of the quadratic form trivially (i.e. a linear combination of squares of
independent linear forms). To do so, we use Gauss’s algorithm” on the left-hand
side quadratic form to get the right-hand side form. Actually, we could rather
expand and reduce the right-hand side to get the left-hand side expression, but
we suppose that we are in the situation where we try to compute the rank of
the left-hand side quadratic form (which is usually the case). The equality we
consider is the following:

Ytz § N2
5) =2
After some simple algebraic modifications (associativity and commutativity),

we have to prove (the lemma has been named quadratic):

Pty —ay—yzr—zz+22=(x

quadratic <
1 subgoal

“In Coq and some other proof assistants based on the Curry-Howard isomorphism, a typical
proof style can be to use an algorithm to guide a proof. Afterwards, a program implementing
the given algorithm can be automatically extracted from this proof.

D. Delahaye & M. Mayero: A Maple mode for Coq

x : R
y : R
z : R

CEXKX-XKY-ZAXHYRY-YRZAZHZ ==
(x-(y+2) /2) % (x- (y+2) /2) +3/4* (y-z) *(y-2) * ¢

__QiE)Z

The first step consists in partially factorizing z2—zy—zz into (z 5

quadratic < Replace ‘‘x*x-x*y-z*x‘‘ with
quadratic < CC(x-(y+2) /2) % (x- (y+2) /2) - (y+z) * (y+z) /4° ¢ .
2 subgoals

x : R
y : R
z : R

CC(x-(y+z) /2)* (x- (y+2) /2) - (y+z) * (y+2) /4+y*y-y*z+z*z ==
(x-(y+2) /2) % (x- (y+2) /2) +3/4* (y-z) *(y-2) * ¢

subgoal 2 is:
CC(x-(y+z) /2) * (x- (y+2) /2) - (y+z) * (y+2) /4 == x*x-xX*y-2*x ‘¢

23

(y+2)*

4

The second goal has been generated by the tactic Replace. To prove this goal,
we use the new tactic Simplify, coming from Maple, to simplify the left-hand
side term and to get the right-hand side term. The idea is to conclude using
the tactic Reflexivity which applies the reflexivity property of the equality.

As Simplify calls the tactic Field, another subgoal is also generated,

i.e. the

side condition that 2 x (2 x 4) # 0. This condition is simply proved by the
tactic DiscrR which deals with equalities and inequalities over reals involving

constants:

quadratic < 2:8implify ¢‘(x-(y+z)/2)*(x-(y+z)/2)-
quadratic < (y+z)*(y+z) /4 ¢;

quadratic < [Unfold Rminus;Rewrite (Rmult_sym z x);
quadratic < Reflexivity [DiscrR].

1 subgoal

x : R
y : R
z : R

CC(x-(y+z) /2) % (x- (y+2) /2) - (y+z) * (y+2) /d+y*y-y*z+z*z ==
(x-(y+z) /2) * (x- (y+2) /2) +3/4* (y-z) * (y-z) ¢

where Unfold Rminus replaces the binary minus with the unary minus (in

D. Delahaye & M. Mayero: A Maple mode for Coq 24

the right-hand side part) and Rewrite (Rmult_sym z x) commutates z and x
(also in the right-hand side part).

After some associativity manipulations, we can perform a full distribution in
—M +y? — yz + 22 thanks to the tactic Expand (the side condition 4 x 2 # 0
is generated and proved by DiscrR):

quadratic < Expand ‘- ((y+z)*(y+z)/4)+y*y-y*z+zxz‘‘;
quadratic < [Idtac|DiscrR].

1 subgoal
x : R
y : R
z : R

CC(x=-(y+z) /2) * (2= (y+2) /2) + (3% / Axy*y+
- (3%/2xy*z)+3%/4*z*z) ==
(x-(y+2) /2) * (x-(y+2) /2) +3/4* (y-z) *(y-z) ¢ ¢

Now, we can factorize to get the last square using Factor (again a side con-
dition, i.e. 4 x 2 # 0 is generated and proved by DiscrR):

quadratic < Factor ¢‘¢3%/4*y*y+ -(3%/2xy*z)+3%/4xz*z‘¢;
quadratic < [Idtac|DiscrR].

1 subgoal
x: R
y : R
z : R

CC(x-(y+z) /2) % (x-(y+2) /2) +3* /4 (y+ -2)*(y+ -z) ==
(x-(y+2) /2) * (x-(y+2) /2) +3/4* (y-2z) *(y-2) ¢ ¢

Finally, once 3%/4 and y+-z have been respectively transformed into 3/4 and
y-z, we can conclude using the tactic Reflexivity.
The Coq proof script is given in detail below:

Lemma quadratic:(x,y,z:R)
¢¢ XAXHYHY-XKY-Y*Z-Z¥X+Z*Z==
(x-(y+2) /2) % (x- (y+2) /2)+3/4* (y-z) *(y-z) “ ¢.

Proof.
Intros.
Replace °‘x*x+y*y-x*y-y*z-z*x+z*z‘‘ with
¢ Cx*x-x*y-z*x+y*Ry-y*z+zxz‘ ¢ ; [Idtac|Ring] .
Replace ‘‘x*x-x*y-z#x‘‘ with

CC(x-(y+z) /2) % (x- (y+z2) /2) - (y+z) * (y+z) /4¢ ¢.
2:Simplify ¢ (x-(y+z)/2)*(x-(y+z)/2)-(y+z)*x(y+z)/4‘¢;

D. Delahaye & M. Mayero: A Maple mode for Coq 25

[Unfold Rminus;Rewrite (Rmult_sym z x);Reflexivity
[DiscrR].

Unfold 2 Rminus.
Replace ‘¢ (x-(y+z)/2)*(x-(y+z)/2)+

- ((y+z2)*(y+2z) /4) +y*y-y*z+z*xz‘ ¢ with
CC(x-(y+z) /2) * (x-(y+z) /2) +
(- ((y+z) *(y+z) /4) +yxy-y*z+z*z) ¢ ¢ ; [Idtac |Ring] .

Expand ¢‘-((y+z)*(y+z)/4)+y*y-y*z+z*xz**;[Idtac|DiscrR].
Factor ‘‘3*/4xy*y+ -(3%/2%y*z)+3%/4*xzxz‘‘;[Idtac|DiscrR].
Fold ‘¢3/4‘¢;Fold ‘‘y-z‘‘.
Reflexivity.

Save.

References

1.

Andrew Adams, Martin Dunstan, Hanne Gottliebsen, Tom Kelsey, Ursula
Martin, and Sam Owre. Computer Algebra Meets Automated Theorem
Proving: Integrating Maple and PVS. In R.J. Boulton and P.B. Jackson,
editors, TPHOLs 2001, volume 2152 of LNCS, pages 27—42. Springer-Verlag,
2001.

Clemens Ballarin, Karsten Homann, and Jacques Calmet. Theorems and
Algorithms: An Interface between Isabelle and Maple. In International Sym-
posium on Symbolic and Algebraic Computation, pages 150-157, 1995.

Henk Barendregt and Erik Barendsen. Autarkic Computations in Formal
Proofs. Journal of Automated Reasoning (JAR), 28(3):321-336, April 2002.

Henk Barendregt and Arjeh M. Cohen. Electronic Communication of Math-
ematics and the Interaction of Computer Algebra Systems and Proof Assis-
tants. Journal of Symbolic Computation (JSC), 32(1/2):3-22, July/August
2001.

Samuel Boutin. Réflexions sur les quotients. PhD thesis, Université Paris 7,
April 1997.

Samuel Boutin. Using Reflection to Build Efficient and Certified Decision
Procedures. In Theoretical Aspects of Computer Software, pages 515-529,
1997.

Olga Caprotti and Arjeh M. Cohen. On the Role of OpenMath in Inter-
active Mathematical Documents. Journal of Symbolic Computation (JSC),
32(4):351-364, September 2001.

Bruce W. Char, Keith O. Geddes, Gaston H. Gonnet, Benton L. Leong,
Michael B. Monagan, and Stephen M. Watt. The Maple V Language Refer-
ence Manual. Springer-Verlag, New York, 1991. ISBN 0387976221.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

D. Delahaye & M. Mayero: A Maple mode for Coq 26

Simon Colton. The HR Program for Theorem Generation. In Proceedings
of the 18th International Conference on Automated Deduction, LNCS, pages
285-289. Springer-Verlag, 2002.

Simon Colton. Making Conjectures about Maple Functions. In Proceed-
ings of the Joint International Conferences on Artificial Intelligence, Au-
tomated Reasoning, and Symbolic Computation, pages 259-274. Springer-
Verlag, 2002.

Thierry Coquand, Catarina Coquand, Thomas Hallgren, and Aarne Ranta.
The Alfa Home Page, 2001.
http://www.md.chalmers.se/~hallgren/Alfa/.

David Delahaye and Micaela Mayero. Field: une procédure de décision
pour les nombres réels en Coq. In Journées Francophones des Langages
Applicatifs, Pontarlier (France). INRIA, January 2001.
ftp://ftp.inria.fr/INRIA /Projects/coq/David.Delahaye/papers /JFLA2000-
Field.ps.gz.

Gilles Dowek, Thérése Hardin, and Claude Kirchner. Theorem Proving Mod-
ulo. Technical Report RR-3400, INRIA-Rocquencourt, France, April 1998.
ftp://ftp.inria.fr/INRIA/publication/RR/RR-3400.ps.gz.

M. J. C. Gordon and T. F. Melham. Introduction to HOL: a Theorem Proving
Environment for Higher Order Logic. Cambridge University Press, 1993.

John Harrison. Metatheory and Reflection in Theorem Proving: a Survey
and Critique. Technical Report CRC-053, SRI Cambridge, UK, 1995.
http://www.cl.cam.ac.uk/users/jrh/papers/reflect.dvi.gz.

John Harrison and Laurent Théry. A Skeptic’s Approach to Combining HOL
and Maple. Journal of Automated Reasoning, 21:279-294, 1998.

Michael Kohlhase. OMDoc: an Open Markup Format for Mathematical
Documents. Technical Report SEKI SR-00-02, Universitit des Saarlandes,
Saarebrucken (DE), 2000.

http://www.mathweb.org/omdoc.

Martijn Oostdijk and Herman Geuvers. Proof by Computation in the Coq
System. Theoretical Computer Science, 272(1-2):293-314, 2002.

Sam Owre, Natarajan Shankar, and John Rushby. PVS: A Prototype Veri-
fication System. In Proceedings of CADE 11, Saratoga Springs, New York,
June 1992.

Larry Paulson and Tobias Nipkow. The Isabelle Home Page, 2003.
http://www.cl.cam.ac.uk/Research/HVG/Isabelle /index.html.

21.

22.

23.

24.

25.

D. Delahaye & M. Mayero: A Maple mode for Coq 27

Randy Pollack. The Theory of Lego: A Proof Checker for the Extended
Calculus of Constructions. PhD thesis, University of Edinburgh, 1994.
http://www.dcs.ed.ac.uk/home/rap/export/thesis.ps.gz.

Harald Ruef. Computational Reflection in the Calculus of Constructions
and its Application to Theorem Proving. In R. Hindley, editor, Proceedings
for the Third International Conference on Typed Lambda Calculus and Ap-
plications (TLCA’97), Lecture Notes in Computer Science, Nancy, France,
April 1997. Springer-Verlag.

Volker Sorge. Non-Trivial Computations in Proof Planning. In Héléne Kirch-
ner and Christophe Ringeissen, editors, Frontiers of Combining Systems :
Third International Workshop, FroCoS 2000, volume 1794 of LNCS, pages
121-135, Nancy, France, 22-24 March 2000. Springer-Verlag, Berlin, Ger-
many.

The Coq Development Team. The Coq Proof Assistant Reference Manual
Version 7.3. INRIA-Rocquencourt, May 2002.
http://coq.inria.fr/doc-eng.html.

the Qmega Group. (dmega: Towards a Mathematical Assistant. In Proceed-
ings of CADE-14, volume 1249 of LNAI, pages 252-255. Springer-Verlag,
1997.

D4 PAPER 4: THE ZENON AUTOMATED THEOREM PROVER 137

D.4 PAPER 4. THE ZENON AUTOMATED THEOREM PROVER

This paper is related to Chapter 3 and has been published in [24].

Zenon: an Extensible Automated Theorem Prover
Producing Checkable Proofs

Richard Bonichon!, David Delahaye?, and Damien Doligez3

! LIP6/Paris 6, Paris, France,
Richard.Bonichon@lip6.fr
2 CEDRIC/CNAM, Paris, France,
David.Delahaye@cnam. fr
% INRIA, Rocquencourt, France,
Damien.Doligez@inria.fr

Abstract. We present Zenon, an automated theorem prover for first or-
der classical logic (with equality), based on the tableau method. Zenon is
intended to be the dedicated prover of the Focal environment, an object-
oriented algebraic specification and proof system, which is able to pro-
duce OCaml code for execution and Coq code for certification. Zenon can
directly generate Coq proofs (proof scripts or proof terms), which can be
reinserted in the Coq specifications produced by Focal. Zenon can also be
extended, which makes specific (and possibly local) automation possible
in Focal.

1 Introduction

Theorem proving is generally separated into two distinct domains: automated
theorem proving and interactive theorem proving. Even if these two domains are
obviously connected, it seems that in practice, they have little interaction. Actu-
ally, the motivations are quite different: automated theorem proving focuses on
heuristic concerns (complexity, efficiency, ...) to solve well-identified problems,
whereas interactive theorem proving is more concerned with providing means (es-
sentially tools) to achieve proofs of theorems. As a consequence, in automated
theorem proving, it is quite difficult to produce formal proofs and in general, the
corresponding tools only generate proof traces, which can be seen as abstractions
of formal proofs and cannot be directly translated into machine checkable proofs.
In this way, we can understand how complicated it is to integrate automated the-
orem proving features into interactive theorem provers, which tend to suffer from
a certain lack of automation. Over the past ten years, some experiments have
aimed to make these two kinds of theorem proving activities interact, such as
between Gandalf and HOL by J. Hurd [5], between Otter and ACL2 by W. Mc-
Cune and O. Shumsky [8], between Bliksem and Coq by M. Bezem, D. Hendriks
and H. de Nivelle [2], or more recently between E, SPASS, Vampire and Isabelle
by L. C. Paulson and K. W. Susanto [9]. However, these examples of integration
are not fully satisfactory, since the design of the corresponding automated the-
orem provers is clearly separated from the automation that could be required

by the respective interactive theorem provers. In particular, it is impossible to
extend the automated theorem prover to manage a very specific and local need
for automation.

In this paper, we present Zenon, an automated theorem prover for first or-
der classical logic (with equality), based on the tableau method. Zenon is not
supposed to be only another general-purpose automated theorem prover, but is
designed to be the reasoning support mechanism of the Focal [15] environment,
initially conceived by T. Hardin and R. Rioboo. Focal is a language in which
it is possible to build applications step by step, going from abstract specifica-
tions to concrete implementations. These different structures are combined using
inheritance and parameterization, inspired by object-oriented programming; in
addition, each of these structures is equipped with a carrier set, providing a
typical algebraic specification flavor. Moreover, in this language, there is a clean
separation between the activities of programming and proving. In particular,
the compiler is able to produce OCaml [14] code for execution and Coq [13] code
for certification. In this compilation scheme, Zenon is involved in the certifica-
tion part, between the specification level and the generated Coq implementation.
Zenon is intended to be the prover of Focal, whereas Coq is used only as a proof
checker to ensure the soundness of the final output.

Beyond the automation itself, Zenon brings an effective help to the design
of Focal. First, Zenon uses the tableau method. Even though, these days, this
method is generally considered as not very efficient (compared to resolution, for
example), it has the advantage of being very appropriate for building formal
proofs. In this way, Zenon has a low-level format of proofs, which is very close
to a sequent calculus. From this low-level format, Zenon can directly produce
proofs for Coq (it could be easily done for other proof assistants). This feature
can be seen as a guarantee of soundness for the implementation of Zenon, but it
is also essential to Focal, where the Coq proofs produced by Zenon are reinserted
in the Coq specifications generated by the Focal compiler and fully verified by
Cog. In addition, Zenon is also able to produce proof terms for Coq (using its
Curry-Howard isomorphism capability), so that Zenon verifies the De Bruijn
criterion [1], i.e. it generates proof terms that can be checked independently
by a relatively small and easily hand checked algorithm. This means that it is
possible to verify Zenon’s proofs without Coq, using another tool that would
implement only the type-checking of Coq. Second, Zenon can be easily extended
and this is directly related to the use of the tableau method, which is also very
appropriate to handle additional rules. Thanks to this feature, it is possible
to manage specific (and possibly local) needs of automation in Focal, such as
arithmetic, induction, etc.

The paper is organized as follows: in Section 2, we give the rules of the search
method used by Zenon, as well as the format of the generated proofs (in this part,
we also point out some specific implementation techniques, such as the use of
non-destructive rules and pruning, the management of lemmas or the extension
mechanism); in Section 3, we describe the intermediate proof format produced by
translating from the proof search rules; in Section 4, we give the translation from

this intermediate format to Coq proofs; in Section 5, we provide some examples
of use, coming from the TPTP library but also from Focal applications.

2 MLproof

The MLproof inference rules (Figures 1 and 2) are used by Zenon to search for
a proof. These rules are applied with the normal tableau method: starting from
the negation of the goal, apply the rules in top-down fashion to build a tree.
When all branches are closed (i.e. end with an application of a closure rule), the
tree is closed. The closed tree is a proof of the goal.

Note that this algorithm is applied in strict depth-first order: we close the
current branch before starting work on another branch. Moreover, we work in
a non-destructive way: working on one branch will never change the formulas
present in any other branch.

We divide these rules into five distinct classes to be used for a more efficient
proof search. This extends the usual sets of rules dealing with «, 3, §, y-formulas
and closure (®) with the specific rules of Zenon. We list below the five sets of
rules and their elements:

A Ay, QA On= y Oy TTrefl

unfolding rules

/8 BVa /8—|/\7 B:>7 B<:>7 /8—|<:>7 ;éfunc

trans, pred, sym, transsym, transeq, transeqsym
03,0_y

Y5 Y=3; VWinsty Y—-Jinst> YVuns Y=Jun

@T; @J_7 @; @’r, @3

[«

®R

As hinted by the use of the € symbol in the rules, the § rules are handled
with Hilbert’s operator [7] rather than using skolemization.

The following subsections describe specific features of our theorem prover,
starting with how metavariables are used in a non-destructive setting.

2.1 Handling of Metavariables

What we call here metavariables are often named free variables in tableau-related
literature. They are not used as variables in Zenon as they are never substituted.

Instead of substitution, we use the following method: when we encounter a
universal formula Vz P(z), we apply rule vy, which introduces a new metavari-
able, linked to this universal formula. Then, when we have a potential contra-
diction such as —R,.(t, X), we apply rule Yvinst (With the ¢ given by the potential
contradiction) in the current branch to our original universal formula. If this
instantiation closes the subtree rooted at the vinst node, we know that pruning
(see section 2.2) will remove the nodes between the two v nodes, hence removing
the need for substitution of the metavariable.

Closure and cut rules

1 T ——cut
N (OXN ® O-T P|-P
- R, (t,t) P -P R(a,b) —Rs(b,a)
S M e

Analytic rules

P, _PeQ . _PeQ
P ~P-Q|PQ "7 -P,Q|P-Q "7
PAQ ~(PVQ) -(P=Q)
P “p-Q P-q =
PVQ ~(PAQ) P=Q
rig ™ 1@ riq °
dz P(z) -Vz P(z) p
S A ————— 0
P(e(w)-P(x)) ~P(e(z).P(2))
~-rules
Vz P(z) -3z P(x) Vz P(z)
— WM —— Y-3IM YYun
P(X) -P(X) Vzi..zn P(s(z1,...,20))
—-dz P —-dz P
M Yinst wi(w) Y-3inst ad (x) Y-3un
P(t) -P(t) -3z;..xn P(s(z1, ..., Tn))
Relational rules
P(tl,...,tn) ﬁP(Sl,..,Sn) pred f(tl,...,tn) #f(sl,...,sn) "
un
t17581|...|tn75sn t17581|...|tn?58n
R (s,t) - Rs(u,v) sym -R.(s,t) .
t#u|s#v s#t
Ry(s,t) =R (u,v) .
w# 5, Ri(u,s) [t £0,~Re(t,0)
Bis(s,1) ~hes (u,0) transsym
v # 8,7 Ris(v,8) | t # u, " Rys(t, 1)
s=t Ry (u,v)
transeq
u # 8,2 Ri(u, s) | = Re(u, s), " Ri(t,v) | t # v, " Re(t,v)
s=t Rio(u,v) transegsym

v # 8, Ris(v,8) | "Rys(v,8), " Res(t,u) | t # uy, " Rys(t, 1)

where R,, Rs, R:, and R;, are respectively reflexive, symmetric, transitive,
and transitive-symmetric relations.

Fig. 1. MLproof rules (part 1)

Unfolding rules: if P(z)=Def(z) and f(z)=def(z) then
P(z) ~P(x)
7 5-unfold —— 7’ p-unfold
Def(z) 00 “Def(z) T O
fl)=t t=f(=z)
——— f-unfold;— ———— frunfold,—
def(z) =¢ O t=def(z) O
fla) #1¢ t# f(z)
—————— f-unfold —————— f-unfold,
def(@) #¢ U0 T L def(@) O
Extension rule
Ci,..e, Cp ext(name,args,
1:1'117 ceny H1m | | Hn1, vy an [Ci],[Hlj, ceny an])
where name is the name of a predefined lemma s.t.
CiA ... ACp =V, (A, Hij)

Fig. 2. MLproof rules (part 2)

If the instantiation does not close the subtree, the formulas containing the
metavariable are still available in the current branch to trigger other potential
contradictions, hence we get as many instantiations as needed from a single
application of the yyas rule. This means that we do not need to use iterative
deepening to ensure completeness.

Let us consider the following example:

Ve, P(z) V Q(z) —P(a) —Q(a)
P)VRX) 4
PX) Qo)™
o’
a a
o 2 e ©

Wm

In this case, the rule 7vinst is triggered by the match between —P(a) and
P(X), which tells us to instantiate Vz, P(x) V Q(x) with the value a. This tree
is not a complete proof because it has an open branch (under Q(X)). As we will
see in Section 2.2, this open branch does not need to be explored because we
can remove it (along with some nodes) to yield a closed proof tree of the original
formulas.

2.2 Minimizing the Tree Size

For efficient proof search, a prover must minimize the size of the search tree. This
is done in two ways. The first is by choosing the order in which the rules are

applied: non-branching rules are tried first. It induces the following < ordering
on the application of the rules ® < a < § < 8 < 7, stating thereby that any
applicable ® rule has priority over any of the other possible rules.

The second is by pruning. When a branching node N has a closed subtree as
one of its branches B, we can examine this closed subtree to determine which
formulas are useful. If the formula introduced by N in B is not in the set of
useful formulas, we can remove N and graft the subtree in its place because the
subtree is a valid refutation of B without V.

The notion of useful formula is defined as follows: a formula is useful in a
subtree if it is one of the formulas appearing in the hypotheses (the upper side)
of a rule application in that subtree.

Consider the example of section 2.1. There is a subtree rooted at the Vinst
node. This subtree does not use the formula P(X) that appears just above it,
because the premise of the Vinst rule is the formula Vz, P(x) V Q(z) at the root
of the proof tree, and none of the other subtree nodes uses P(X). Because of
this, we can remove the 8y node above the subtree, and graft the subtree in its
place. We can proceed in the same fashion to remove the vy node, and we get
the following tree:

Ve, P) V Q) ~P(a) ~Qa) .
P@VQ@ .
Pla) , Q)"
O} ®

This time, the proof tree is closed and the proof search is over. The impor-
tance of this pruning is that we have completely avoided doing the proof search
below the Q(X) branch by carefully examining the result of the proof search in
the P(X) branch, thereby reducing the branching factor of the search tree. In
the process, we have reduced the size of the resulting proof as compared to the
proof search tree.

2.3 Extensions

Zenon offers the ability to extend its core of deductive rules to match certain
specific requirements. For instance, the extension named Cogbool is regularly
used in the setting of Focal, where a function P(z,y) returning a boolean result
is encapsulated into a Is_true(P(x,y)) predicate as it is translated into the cor-
responding Coq file. In the case where P is transitive (for example), this prevents
Zenon from using its specific inference rules, thereby reducing the efficiency of the
proof search. Our solution is to transform all occurrences of Is_true(P(x,y))
into a corresponding Is_true__P(x,y) predicate which will let Zenon make use
of its transitivity property.

Concretely, extensions are arbitrary OCaml files that implement new inference
rules; they are loaded through command-line options when Zenon is started,
along with Coq files containing the lemmas used to translate the inference rules
introduced by the extension.

2.4 Subsumption

Whenever the current branch contains a superset of the formulas used in an
already-closed subtree, we can graft this subtree at the current node because it
is a valid closure of the current branch. The implementation maintains a data
structure with all the subtrees closed so far (indexed by their used formulas) and
queries this data each time a formula is added to the current branch.

We can illustrate subsumption with the following example:

BvC B=D (C=D D=FE -E

B /8 C /B\/
ﬂ@ D+ ﬁz ﬁ@Dﬂ:>
© b, EJ 0

®© ®

Consider the Dx subtree in the left half of the tree and the open branch under
D. The formulas used by the Dx subtree are D, D = E, and —E. The same
formulas are already available in the open branch, thus we do not need to search
for a proof: we can simply reuse the Dx subtree. In fact, the implementation
does not copy the subtree, but uses sharing (hence turning the proof tree into a
dag). Such shared subtrees appear as lemmas in the Coq proof output.

3 LLproof

LLproof is the low-level language of proofs produced by Zenon, which makes the
generation of machine checkable proofs possible (see Section 4 for an example in
the framework of Coq). Once a proof has been found with the MLproof rules, it
is translated to this sequent-like language. We will sketch a proof of soundness
and completeness of MLproof proofs w.r.t. LLproof proofs.

LLproof rules (Figures 3 and 4) indeed describe a one-sided sequent calculus
with explicit contractions in every inference rule, which roughly resembles an
upside-down non-destructive tableau method. This sequent calculus is extended
to handle unfolding, lemmas and the extension mechanism of Zenon.

Translating mid-level to low-level proofs gives us a direct proof of soundness
for MLproof w.r.t. LLproof. There is a one-to-one correspondence between parts
of the two calculi, most notably those which do not introduce quantifiers in
MLproof (quantifier-free fragment, axioms).

We can now proceed to prove the following proposition.

Theorem 1 (Soundness and completeness of MLproof w.r.t. LLproof).

1. Every formula provable in LLproof has a proof in MLproof.
2. Every formula provable in MLproof has a proof in LLproof.

Proof. Proof of (1) is immediate as every rule of LLproof has a direct equivalent
in MLproof, except the lemma rule, but we can only apply the lemma rule when

Closure and quantifier-free rules

ir1 + TrL T ILP-PFrL =
SR —— IP,--PF L P+ 1 r'-PF_L1 ¢
t#FiEL TPFL TFL cu
LLPAQ,P,QF L LLPVQPFL LPVQQFL
TLPAQF L TLPVQF L
I[P,~Q,~(P= Q)+ L L-PP=Qrl TLLQP=QFl _
I-(P=Q)F1L IP=QFL
I,-P,-Q,~(PVQ)F 1 I'-P~(PAQ)F L I-Q,~(PAQ)F L
I,-(PVQ)F L B I~(PAQ)F L B

LP&Q-P-Q-l LP&QPQEL
PoQFL

Fzﬁszaﬁ(Pc}Q)}_J- F,P,_\Q,_l(P@Q)FJ-

R
I'~-(PeQ)FL

Fig. 3. LLproof rules (part 1)

we have a proof of the lemma’s statement, which we can handle in MLproof by
grafting a copy of the lemma’s proof in the place of the lemma rule.

The proof of (2) is not so immediate as we have to transform some MLproof
rules which are the combination of two or more lower-level rules. It proceeds by
induction on the size of the MLproof proofs; the details of the proof are not given
here.

4 Producing Coq Proofs

As we said in the introduction, Zenon is able to produce Coq [13] proofs, and
this automatic generation is carried out from the LLproof format described in
Section 3. From a theoretical point of view, this feature ensures the soundness of
the LLproof formalism (w.r.t. a known theory), whereas from a practical point of
view, this provides a (local) guarantee of Zenon’s implementation. But especially,
in the context of the Focal system [15], this allows us to produce homogeneous
Coq code (where the Coq proofs built by Zenon are reinserted in the Coq speci-
fications generated by the Focal compiler), that can be fully verified by Coq.

4.1 Translation

The translation consists in producing, from proofs provided in LLproof format,
proofs in the theory of the theorem prover we chose to perform the validation,

Quantifier rules

I,P(c),3z P(z) - L I',-P(c),~Vz P(z) F L .
—V where ¢ is a fresh constant
I3z P(z) - L I''-Vz P(z)F L
I, P(t P L I',—-P(t),—~3xz P L
 P(t), Ve Plz) , 2P (#), =3z Plz) —3 where t is any closed term
I'Ve P(z) - L I''-3z P(zx)F L

Special rules

Aty #ull-J_ Aty #unl-J_
F, P(tl, veey tn), —|P(U1, veey un) L

pred

where A =T U{P(t1,...,tn), "P(u1,...,un)}

A,tl $A’M1|-J_ A,tn #unl-J_
F,f(tl, ,tn) # f(ul, ...,un) L

where A =T'U {f(t1,....tn) # f(u1,...,un)}

IC,HF L
I,CF L

fun

def(name,C,H)

if one can go from C to H by unfolding definition name.

A, Hu,...HimF L A Hpy,y oy Hog = L ext(name,args,
I,Ci,..,CpF L (Cil,[Haj, -y Huk))

where A =T"U{C1,...,Cp}
name is the name of a predefined lemma s.t.
Ci A ... ACp = V(A Hij)

TFL lemma(name, args)

if C is the conclusion associated with name in the list of previously-done proofs.
Arguments args are the parameters of name.

Fig. 4. LLproof rules (part 2)

which is Coq in our case. This translation is not straightforward for some rea-
sons inherent to the underlying theory of Coq, but also to Coq itself. One of
them is that the theory of Coq is based on an intuitionistic logic, i.e. without
the excluded middle, whereas LLproof is purely classical. To adapt the theory of
Coq to LLproof, we have to add the excluded middle and the resulting theory is
still consistent. But Coq does not provide a genuine classical mode (even if the
classical library is loaded), i.e. with a classical sequent allowing several propo-
sitions on the right hand side, so that proofs must still be completed using an

intuitionistic sequent (with only one proposition to the right hand side) and the
excluded middle must be added as an axiom. Such a system does not correspond
to Gentzen’s LK sequent calculus, which is normally used when doing classical
proofs, but rather to Gentzen’s LJ sequent calculus provided with an explicit
excluded middle rule. From a practical point of view, doing proofs in this system
is more difficult than in LK (where the right contraction rule is a good short-
cut), but in our case this has little effect because all our proofs are produced
automatically.

Beyond predicate calculus in general, Zenon, like most of first order auto-
mated deduction systems, considers equality as a special predicate and uses
specific rules to deal with it. Thus, to translate equality proofs correctly, we
have to extend the theory of LJ with equational logic rules. Such a theory will
be called LJeq (due to space constraints, we cannot give the corresponding rules,
but this theory is quite standard and can be found in literature).

We have the following theorem:

Theorem 2 (Soundness of LLproof w.r.t. Lleq). Every sequent provable in
LLproof has a proof in Lleg.

Proof. The proof is done by induction over the structure of the proof of the
sequent in LLproof. Due to space constraints, we cannot detail the many cases,
but as an example, we can consider the translation of the = A rule of LLproof,
which is the following:

1 P
]ﬂ,ﬁ(f)A(Q)fﬂf7F L]ﬂ,ﬁ(f’A(Q),—ﬂQ 1L
I'-(PAQ)F L

-

where 7, and w2 are respectively the proofs of I',~(P A Q),—~P F L and
]ﬂ,ﬁ(f)A(Q),—ﬂQ L.
This rule is translated in LJeq as follows:

T 2
I''-~(PAQ),-PF L . I''-(PAQ),-QF L .
Tright “Tright
I, ~(PAQ)F —P emg I,-PAQF-—Q °
I,~(PAQ)FP I, -PAQFQ
Aﬁgm

I''-(PANQFPAQ
I'~(PAQ),~(PAQ)F L
I''-(PAQ)F L

Tleft

cont

where 77 and 75 are the translated proofs of 7; and w3, em the excluded
middle rule, cont the left contraction rule, =/ A right the right rule for - /A, and
—ee the left rule for —.

4.2 TImplementation

General Scheme The proof of Theorem 2 allows Zenon to produce Coq proofs
from proofs in LLproof, since Leq is included in the underlying theory of Coq,
i.e. the Calculus of Inductive Constructions (CIC for short). Actually, we have
two kinds of translations: a first one generating proof scripts and a second one
directly generating proof terms (thanks to the Curry-Howard isomorphism capa-
bility of Coq). In both translations, in order to factorize proofs and especially to
minimize the size of the produced proofs, the idea is not to build the proof scripts
corresponding to the translated rules, but to prove a lemma for each translated
rule once and for all (a macro tactic in L4, is not appropriate because the body
of these macros is rerun each time a translated rule is used in a proof). Thus,
the generated Coq proofs are just sequences of applications of these lemmas, and
they are not only quite compact, but also quite efficient in the sense that the
corresponding Coq checking is fast. For instance, if we consider the = A rule of
LLproof translated in the proof of Theorem 2, the associated Coq lemma is the
following:

Lemma zenon _notand : forall P Q : Prop,
(~P — False) — (~Q — False) — (~(P A Q) — False).

As an example of complete Coq proof produced by Zenon and involving the
previous lemma, let us consider the proof of =(P A Q) = —P V =@, where P
and () are two propositional variables. For this proof, Zenon is able to generate
a Coq proof script as follows:

Parameters P Q : Prop.
Lemma de_morgan : ~(P A Q) = ~P V ~Q.

Proof.
apply NNPP. intro G.
apply (notimply s G). zenon_intro H2. zenon_intro HI.
apply (notor_s H1). zenon_intro H4. zenon _intro H3.

apply H3. zenon _intro H5.
apply H4. zenon _intro H6.
apply (notand_s H2);
[zenon_intro H8 | zenon _intro H7 |.
exact (H8 H6).
exact (H7 H5).
Qed.

where NNPP is the excluded middle, rule s (where rule is notimply, notor,
etc) a definition which allows us to apply partially the corresponding lemma rule
providing the arguments at any position (not only beginning by the leftmost po-
sition), and zenon_intro a macro tactic to introduce (in the context) hypotheses
with possibly fresh names if the provided names are already used.

For the same example, Zenon is also able to directly produce the following
proof term (without the help of Coq):

Parameters P Q : Prop.
Lemma de_morgan : ~(P A Q) - ~P V ~Q.

Proof.
exact (NNPP _ (fun G : ~(~(P A Q) — ~P V ~Q) =(notimply
(~P A Q) (%P V ~Q) (Fun (H5 : ~(P A Q)
(H8 : ~(~P V ~Q)) =(notor (~P) (~Q) (fun (H6 : ~~P)
(H7 : ~~Q) =(H7 (fun H1 : Q =(H6
(fun H3 : P =(notand P Q (fun H4 : ~P =-(H4 H3))
q d(fun H2 : ~Q =(H2 H1)) H5)))))) HB)) G))).

As said in the introduction, this possibility of generating proof terms is par-
ticularly important in the sense that Zenon verifies the De Bruijn criterion [1], i.e.
it generates a proof format that can be checked by Coq but also independently,
by means of another program or proof system which implements the same type
theory. For example, as an alternative and with an appropriate printer, we can
imagine using the Matita [16] theorem prover, which has the same underlying
theory (CIC) as Coq.

Difficulties In this implementation, we have to be aware of some difficulties.
One of them is that we plug first order logic, which is a priori untyped, into
a typed calculus (CIC). To deal with this problem, we consider that we have
a mono-sorted first order logic, of sort U, and we provide types to variables,
constants, predicates and functions explicitly (the type inference offered by Coq
does not always allow us to guess these types). Obviously, this must be done only
when dealing with purely first order propositions, but can be avoided with propo-
sitions coming from Coq or Focal, which are possible inputs for Zenon, since these
systems are strongly typed and Zenon keeps the corresponding type information
(this is possible since Zenon works in a non-destructive way, see Section 2); in
this case, we generally have a multi-sorted first order logic.

Another difficulty, probably deeper, is that mono/multi-sorted first order
logic implicitly supposes that each sort is not empty, while in the CIC, types
may be not inhabited. This problem is fixed by skolemizing the theory and
considering at least one element for each sort, e.g. E for U. Thus, for example,
it is possible to prove Smullyan’s drinker paradox with Zenon as follows:

Parameter U : Set.

Parameter E : U.

Parameter d : U — Prop.

Lemma drinker paradox :
exists X : U, (d X) = forall Y : U, (d Y).

Proof.
apply NNPP. intro G.
apply G. exists E. apply NNPP. zenon _intro H3.
apply (notimply s H3). zenon_intro H5. zenon_ intro H4.
apply H4. zenon _intro TO. apply NNPP. zenon _intro H6.
apply G. exists T0. apply NNPP. zenon _intro H7.
apply (notimply s H7). zenon_intro H8. zenon_intro H4.
exact (H6 HS).

Qed.

5 Using Zenon in Practice

In this section, we consider the effectiveness of Zenon through benchmarks and
applications. The interested reader can get the distribution of Zenon, which is
available either as part of the Focal environment at http://focal.inria.fr/,
or directly (as a separate tool) at http://focal.inria.fr/zenon/.

5.1 Benchmarks

In order to see how Zenon fares w.r.t. available first-order theorem provers, we
benchmarked it against parts of the latest TPTP library [12] release (v3.2.0).
The Zenon runs were made on an Apple Power Mac Core 2 Duo 2 GHz, with
Zenon’s default timeout of 5 min and size limit of 400 Mbytes. The set of TPTP
syntactic problems SYN was chosen as representative of Zenon’s typical target
problems, and indeed we get good results. We also tried Zenon against the prob-
lems of the FOF category for the latest CASC competition [11].

Problems Proof found| No proof
time|size|other
SYN theorems (282) 264 107 1
CASC-J3 (150) 48 46 |56 | 0O

Some of the formulas proved by Zenon in CASC have a rather high rating,
such as SWV026+1 (0.79), SWV038+1 (0.71), or MSC010+1 (0.57). This last
one consists in proving —— P, assuming P, where P is a large first-order formula.
Thanks to the tableau method, Zenon does not need to decompose the formula,
and the proof is found immediately. All the proofs found by Zenon were verified
by Cogq.

5.2 The EDEMOI Project

In the framework of the EDEMOI* [10] project, Zenon was used to certify the
formal models of two regulations related to airport security: the first one is the
international standard Annex 17 produced by the International Civil Aviation
Organization (ICAQ), an agency of the United Nations; the second one is the Eu-
ropean Directive Doc 2320 produced by the European Civil Aviation Conference
(ECAC) and which is supposed to refine the first one at the European level. The
EDEMOI project aims to integrate and apply several requirements engineering
and formal methods techniques to analyze standards in the domain of airport
security. The novelty of the methodology developed in this project, resides in
the application of techniques, usually reserved for safety-critical software, to the
domain of regulations (in which no implementation is expected).

* The EDEMOI project is supported by the French National "Action Concertée Inci-
tative Sécurité Informatique".

The two formal models of the two considered standards were completed using
the Focal [15] environment and can be found in [3], where the reader can also find
a brief description of Focal. In this formalization, Zenon was used to prove the
several identified theorems ensuring the correctness and the completeness of both
regulations (consistency was not studied formally). Concretely, the development
represents about 10,000 lines of Focal and 200 proofs (2 years to be completed).
Regarding the validation part, Zenon allowed us to discharge most of the proof
obligations automatically (about 90% of them). Actually, Zenon also succeeded
in completing the remaining 10% automatically but beyond the default timeout
(set to 3 min in Focal). This tends to show that Zenon is quite appropriate when
dealing with abstract specifications (no concrete types and very few definitions).
Zenon also helped us to study the consistency of the regulations from a prac-
tical point of view. The idea is to try to derive False from the set of security
properties and to let Zenon work on it for a while. If the proof succeeds then we
have a contradiction, otherwise we can only have a certain level of confidence.
This approach may seem rather naive but appears quite pertinent when used
to identify the correlation between the several security measures according to
specific attack scenarios. The principle is to falsify an existing hypothesis or to
add an inconsistent hypothesis and to study its impact over the entire regula-
tion, i.e. where the potential conflicts are located and which security properties
are concerned. For more information regarding this experiment with Zenon, the
reader can refer to [4].

6 Conclusion

Zenon is an experiment in progress, but we already have a reasonably powerful
prover (see the benchmarks) that can output actual proofs in Coq format (proof
scripts or proof terms) for use in a skeptic-style system, such as the Focal envi-
ronment for example. In addition, the help provided by Zenon in the EDEMOI
project framework, where most of the proofs were discharged (and even all the
proofs with an extended timeout), tends to show how this tool is appropriate for
real-world applications, so that we can be quite optimistic regarding its use, in
particular in the context of Focal.

Future work will focus on improving the handling of metavariables in order
to get better heuristics for finding the right instantiations, and on implement-
ing some theory-based reasoning by using the extension mechanism of Zenon.
Amongst other extensions, we plan to add a theory of arithmetic, but also
reasoning by induction (this feature is under development), which is crucial
when dealing with specifications close to implementations involving, in partic-
ular, concrete datatypes. Finally, it is quite important to apply Zenon to other
case-studies, not only to get a relative measure of its automation power, but
also to understand the practical needs of automation. For example, proofs pro-
vided by Zenon are progressively integrated into the Focal standard library [15]
(which mainly consists of a large kernel of Computer Algebra), and a certified
development regarding security policies [6] is in progress.

References

10.

11.

12.

13.

14.

15.

16.

. Henk Barendregt and Erik Barendsen. Autarkic Computations in Formal Proofs.

Journal of Automated Reasoning (JAR), 28(3):321-336, 2002.

Marc Bezem, Dimitri Hendriks Hendriks, and Hans de Nivelle. Automated Proof
Construction in Type Theory Using Resolution. Journal of Automated Reasoning
(JAR), 29(3-4):253-275, 2002.

David Delahaye, Jean-Frédéric Etienne, and Véronique Viguié Donzeau-Gouge.
Certifying Airport Security Regulations using the Focal Environment. In Formal
Methods (FM), volume 4085 of Lecture Notes in Computer Science (LNCS), pages
48-63, Hamilton, Ontario (Canada), August 2006. Springer.

David Delahaye, Jean-Frédéric Etienne, and Véronique Viguié Donzeau-Gouge.
Reasoning about Airport Security Regulations using the Focal Environment. In
International Symposium on Leveraging Applications of Formal Methods, Verifica-
tion and Validation (ISoLA), Paphos (Cyprus), November 2006.

Joe Hurd. Integrating Gandalf and HOL. In Yves Bertot, Gilles Dowek, André
Hirschowitz, Christine Paulin, and Laurent Théry, editors, Proceedings of Theorem
Proving in Higher Order Logics (TPHOLs), Nice (France), volume 1690 of Lecture
Notes in Computer Science (LNCS), pages 311-322. Springer, September 1999.
Mathieu Jaume and Charles Morisset. Formalisation and Implementation of Ac-
cess Control Models. In Information Assurance and Security (IAS), International
Conference on Information Technology (ITCC), pages 703-708, Las Vegas (USA),
April 2005. IEEE CS Press.

Albert C. Leisenring. Mathematical Logic and Hilbert’s e-Symbol. MacDonald
Technical and Scientific, London, 1969. ISBN 0356026795.

William McCune and Olga Shumsky. System Description: VY. In David A.

McAllester, editor, Proceedings of the 17" International Conference on Automated
Deduction (CADE-17), Pittsburgh (PA, USA), volume 1831, pages 401-405. Lec-
ture Notes in Computer Science (LNCS), June 2000.

Laurence C. Paulson and Kong Woei Susanto. Source-Level Proof Reconstruc-
tion for Interactive Theorem Proving. In Jens Brandt, editor, Theorem Proving
in Higher Order Logics (TPHOLs), Lecture Notes in Computer Science (LNCS).
Springer, September 2007.

The EDEMOI Project, 2003.

http://www-1sr.imag.fr/EDEMOI/.

Geoff Sutcliffe. CASC-J3 - The 3"¢ IJCAR ATP System Competition. In Ul-
rich Ulrich Furbach and Natarajan Shankar Shankar, editors, International Joint
Conference on Automated Reasoning (IJCAR), volume 4130 of Lecture Notes in
Computer Science (LNCS), pages 572-573. Springer, August 2006.

Geoff Sutcliffe and Christian B. Suttner. The TPTP Problem Library: CNF Release
v1.2.1. Journal of Automated Reasoning (JAR), 21(2):177-203, 1998.

The Coq Development Team. Coq, version 8.1. INRIA, November 2006.

Available at: http://coq.inria.fr/.

The Cristal Team. Objective Caml, version 8.10. INRIA, May 2007. Available at:
http://caml.inria.fr/.

The Focal Development Team. Focal, version 0.3.1. CNAM/INRIA/LIP6, May 2005.
Available at: http://focal.inria.fr/.

The HELM Team. Matita, version 0.1.0. Computer Science Department, University
of Bologna, July 2006. Available at: http://matita.cs.unibo.it/.

D.5 PAPER 5: FROM FOCAL TO UML 153

D.5 PAPER 5. FROM FOCAL TO UML

This paper is related to Chapter 4 and has been published in [57].

Noname manuscript No.
(will be inserted by the editor)

A Formal and Sound Transformation from Focal to UML
An Application to Airport Security Regulations

David Delahaye - Jean-Frédéric Etienne -
Véronique Viguié Donzeau-Gouge

the date of receipt and acceptance should be inserted later

Abstract We propose an automatic transformation of
Focal specifications to UML class diagrams. The main
motivation for this work lies within the framework of
the EDEMOI project, which aims to integrate and apply
several requirements engineering and formal methods
techniques to analyze airport security regulations. The
idea is to provide a graphical documentation of formal
models for developers, and in the long-term, for certi-
fication authorities. The transformation is formally de-
scribed and an implementation has been designed. We
also show how the soundness of our approach can be
achieved.

Keywords Formal Methods - Graphical Documenta-
tion - Focal - UML - Airport Security Regulations

1 Introduction

Even though formal methods offer a systematic ap-
proach for verification, the validation process still re-
lies on a high degree of interaction between the various
stake-holders (developers, customers, end-users, certifi-
cation authorities, etc) involved in a critical project. In
addition, the use of formal methods requires a certain
level of expertise in mathematics, which usually hin-
ders communication. In fact, the mathematical nota-
tions used are often too obscure for inexperienced users

D. Delahaye
CEDRIC/CNAM, Paris, France
E-mail: David.Delahaye@cnam.fr

J.-F. Etienne
CEDRIC/CNAM, Paris, France
E-mail: etiennje@cnam.fr

V. Viguié Donzeau-Gouge
CEDRIC/CNAM, Paris, France
E-mail: donzeau@cnam.fr

to properly understand the exact meaning. As a result,
the validation of requirements is difficultly achievable.
This may even jeopardize the entire project as misinter-
pretations or specification errors may lead to the vali-
dation of a totally wrong implementation.

A widely adopted solution to these problems is the
integration of formal and graphical specifications. In
general, the use of graphical notations is quite useful
when interacting with end-users. In fact, these tend to
be more intuitive and are easier to grasp than their
formal (or textual) counterparts. During the last few
years, UML [16] has emerged as a standard in indus-
try for modeling software systems. It provides a set
of graphical constructs, which enables the modeling of
systems in an object-oriented style. Currently, it is sup-
ported by a wide variety of tools, ranging from analysis,
testing, simulation to code generation and transforma-
tion. Interoperability between these tools is generally
achieved by exporting the UML models using the XMl
interchange format.

There have been several researches devoted to es-
tablishing the link between UML and formal methods.
One of the approaches that has been largely studied
is the translation of UML diagrams into formal specifi-
cations [7, 11, 12], which attempts to benefit from the
formal methods tools and techniques while still hav-
ing control over the UML-based industrial practice. The
converse approach is a rather new area of interest [9]. It
is here considered to generate UML models as a means
to provide a graphical documentation for Focal specifi-
cations.

The main motivation for this work lies within the
framework of the EDEMOI! [14] project, which aims

1 The EDEMOI project is supported by the French National
“Action Concertée Incitative Sécurité Informatique”.

to integrate and apply several requirements engineer-
ing and formal methods techniques to analyze airport
security regulations. For this project, we used Focal to
realize the formal models of two regulations, namely the
international standard Annex 17 and the European di-
rective Doc 2320. The formalization is described in [3],
while the certification part is presented in [4]. Within
the project, the purpose of the UML diagrams is two-
fold. First, to provide a graphical documentation of the
formal models produced for developers. Second, to gen-
erate higher-level views of the formal models that would
be more appealing to certification authorities.

For our concern, the choice of UML as a graphical
notation mainly resides in the fact that most of the
Focal design features can seamlessly be represented in
UML. The creation of a domain specific language for
Focal could be a better approach, as it avoids us from
having to deal with the intricacies of the UML seman-
tics. In fact, text-to-model tools [8], such as xText or
TCS, generally facilitates such a process, whereby the
target language is taken as input and the corresponding
metamodel, parser and editor is generated as output.
However, we still have to develop a graphical concrete
syntax for each concept. The corresponding semantics
might be intuitive to developers but not necessarily to
end-users or certification authorities (which is our long-
term objective). Finally, the choice for UML also allows
us to have access to a wide variety of tools ranging from
analysis to code generation and transformation. For in-
stance, the UML models produced can be used to map
Focal specifications to other object-oriented languages,
e.g. Java or C#.

This paper is complementary to the work presented
in [5] and completes the formal schema established for
the translation of Focal specifications into UML dia-
grams. Here, the objective is to provide a graphical
documentation for developers. Our major concern is not
only to make our transformation automatic but also to
prove the soundness of our approach. In this paper, we
refine the abstract syntax proposed in [5] for a subset of
the UML 2.1 static structure constructs [16]. The new
syntax intends to facilitate reasoning. We here also con-
sider all the different aspects of the Focal specification
language and show how the UML metamodel can be tai-
lored to consider some of its semantic specificities. We
also describe how the soundness of our transformation
can be achieved. This consists in showing that the UML
model generated from a well-typed Focal specification
preserves both the well-formedness rules of the UML
metamodel and the constraints specified in the UML
profile defined on purpose. Through this work, we also
contribute to the formalization of the semantics relative
to the template binding construct.

The paper is organized as follows: first, we present
the Focal specification language; next, we propose a
formal description for a subset of the UML 2.1 static
structure constructs; we then show how the UML meta-
model can be extended via the profile mechanism (light-
weight extension) to cater for the semantic specificities
of the Focal language; we afterwards formally describe
our transformation rules and expose how the soundness
of our approach can be achieved; finally, we introduce
our implementation and illustrate our transformation
with a concrete example.

2 The Focal Environment
2.1 What is Focal?

Focal® [6, 15], initiated by T. Hardin and R. Rioboo
with S. Boulmé, is a language in which it is possible
to build certified applications step by step, going from
abstract specifications, called species, to concrete im-
plementations, called collections. These different struc-
tures are combined using inheritance and parameteri-
zation, inspired by object-oriented programming. More-
over, each of these structures is equipped with a carrier
set, providing a typical algebraic specification flavor.
Next, V. Prevosto developed a compiler for this lan-
guage, able to produce OCaml code for execution, Coq
code for certification, but also FocDoc code [13] for
documentation. More recently, D. Doligez provided a
first-order automated theorem prover, called Zenon [1],
which helps the user to complete his/her proofs in Fo-
cal through a declarative-like proof language. This au-
tomated theorem prover can produce pure Coq proofs,
which are reinserted in the Coq specifications generated
by the Focal compiler and fully verified by Coq.

2.2 Specification: Species

The first main notion of the Focal language is the struc-
ture of species, which corresponds to the highest level
of abstraction in a specification. A species can roughly
be seen as a list of attributes of three kinds:

— the carrier type, called representation, which is the
type of the entities that are manipulated by the
functions of the species; the representation can be
either abstract or concrete;

— the functions, which denote the operations allowed
on the entities of the representation; the functions
can be either definitions (when a body is provided)
or declarations (when only a type is given);

2 http://focal.inria.fr/.

— the properties, that must be verified by any further
implementation of the species; the properties can be
either simply properties (when only the proposition
is given) or theorems (when a proof is also provided).

The syntax of a species is the following:

species <name> =

abstract/concrete
representation x)

rep [= <type>]; (*

declaration x)
definition x)

sig <name> in <type>; (*
let <name> = <body>; (*

property <name> : <prop>; (% property)

theorem <name> : <prop> (* theorem x)
proof : <proof>;
end

where <name> is simply a given name, <type>
a type expression (mainly typing of core-ML without
polymorphism but with concrete data types), <body>
a function body (mainly core-ML with conditional,
pattern-matching and recursion), <prop> a (first-
order) proposition and <proof> a proof (expressed in a
declarative style and given to Zenon). In the type lan-
guage, the specific expression “self” refers to the type of
the representation and may be used everywhere except
when defining a concrete representation.

As said previously, species can be combined using
(multiple) inheritance, which works as expected. It is
possible to define functions that were previously only
declared or to prove properties which had no provided
proof. It is also possible to redefine functions previously
defined or to reprove properties already proved. How-
ever, the representation cannot be redefined and func-
tions as well as properties must keep their respective
types and propositions all along the inheritance path.
Another way of combining species is to use parameter-
ization. Species can be parameterized either by other
species or by entities from species. If the parameter is
a species, the parameterized species only has access to
the interface of this species, i.e. only its abstract rep-
resentation, its declarations and its properties. These
two features complete the previous syntax definition as
follows:
species <name> (<name> is <name>[(<pars>)],

<name> in <name>, ...)

inherits <name>, <name> (<pars>),

end

where <pars> is a list of <name>, which denotes
the names used as effective parameters. When the pa-
rameter is a species parameter declaration, the “is” key-
word is used. When it is an entity parameter declara-
tion, the “in” keyword is used.

2.3 Implementation: Collection

The other main notion of the Focal language is the
structure of collection, which corresponds to the imple-
mentation of a specification. A collection implements
a species in such a way that every attribute becomes
concrete: the representation must be concrete, func-
tions must be defined and properties must be proved.
If the implemented species is parameterized, the col-
lection must also provide implementations for these pa-
rameters: either a collection if the parameter is a species
or a given entity if the parameter denotes an entity of
a species. Moreover, a collection is seen (by the other
species and collections) through its corresponding in-
terface; in particular, the representation is an abstract
data type and only the definitions of the collection are
able to manipulate the entities of this type. Finally, a
collection is a terminal item and cannot be extended or
refined by inheritance. The syntax of a collection is the
following;:

collection <name> implements <name>
(<pars>) = ... end

3 UML Syntax

In order to establish a formal framework for our trans-
formation, we propose in [5] an abstract syntax for a
subset of the UML 2.1 static structure constructs [16].
The syntax was mainly derived from the UML 2.1/XMI
schema to reflect as much as possible our implemen-
tation. In this section, we present a new syntax that
hides some of the complexities inherent to the UML
metamodel and thus less dependent on the XMI for-
mat. This not only allows us to increase the readability
of our transformation rules but also to facilitate rea-
soning. Another less tedious approach can be to make
use of a text-to-model tool [8], e.g. xText or TCS, to
obtain a metamodel of the Focal specification language
instead of defining an abstract syntax for UML. The
automatic transformation from Focal to UML may then
be realized at a metamodel level through the use of a
model-to-model transformation language [10], such as
ATL or QVT. Nevertheless, even though such an ap-
proach can be considered during the implementation
phase, it does not allow us to prove the soundness of
our transformation.

The new syntax is shown in Figure 1 and is given
using a BNF-like notation, where: terminal symbols are
written in bold, while non-terminal ones are in italic;
square brackets [...] are used to denote optional com-
ponents, while curly brackets {...} denote grouping; a
trailing star sign * denotes zero, one or several occur-

rences, while a trailing plus sign * denotes one or sev-
eral occurrences; and the non-terminal symbol ident is
used to designate the identifier of each nameable UML
construct. In our syntax, anonymous bound classes are
denoted using the same notation as defined for template
bindings. The class type class-type is defined accord-
ingly to reflect that these classes may also be referenced
as type.

4 From Focal to UML
4.1 Extending the UML Metamodel

In order to properly visualize Focal models using UML
notations, there is a need to extend the UML meta-
model to cater for the semantic specificities of the Fo-
cal language. These extensions are realized through the
creation of a profile, whereby appropriate stereotypes
are defined to reflect the semantics of each Focal con-
struct, namely «Speciesy, «Collectiony», «FocalType»,
«Method», «In», <«Is», «ParameterizedInheritancey,
«Inheritance» and «Implements». To validate our trans-
formation, we also encode the semantics relative to the
template binding construct via the introduction of in-
termediate stereotypes declared as required (i.e. manda-
tory when the corresponding profile is applied). Here,
we base ourselves on the OCL formalization realized by
Caron et al in [2], which we extend to handle nested
bound classes and inherited members. To formally rep-
resent the application of our profile to a UML model,
the abstract syntax given in Figure 1 is slightly ex-
tended. In fact, each keyword (e.g. class inherits, etc)
representing a given UML construct is replaced by a
non-terminal node to reflect the stereotypes that can
be applied to the corresponding construct. For exam-
ple, keyword class is replaced by the non-terminal node
class-head, which is defined as follows:

class-head ::= class | focalType | species | collection

The syntax is also extended to consider the attributes

characterizing each stereotype (e.g., see attributes sub-

stitutes and bound of stereotype «ParameterizedInheri-
. DE .

tance» in rule [I}4]r p ., o of Figure 3).

4.2 Transformation Rules

Despite their similarities, Focal species and UML classes
are based on two different concepts. In Focal, the func-
tions defined in a species are intended to manipulate en-
tities of a given representation, which are static items
having a unique value. Hence, we model a species as

an abstract factory class (stereotyped with «Speciesy),
which defines an interface for manipulating immutable
value objects of a given type. Let S denote a species:
S = species s (P) inherits I}, = rep; M; R end,
where s is the name of the species, P a list of pa-
rameters, I}, a list of species from which we inherit,
rep the representation declaration, M the declared/de-
fined functions, and R the properties/theorems defined
in S. Given the context I', in which S is well typed,
the corresponding UML model is obtained by applying
the transformation rule denoted by [S]r in Figures 2
and 3. Our transformation captures every aspect of the
Focal specification language. Due to space limitations,
we here only focus on the representation, parameter
declarations and inheritance. In Figures 2 and 3, L is
used to denote undefinedness and “-” the concatenation
operator on identifiers. We also write ¢ :: Self to desig-
nate the inner class Self defined within c.

The representation of a given species (rule [[rep]]?‘z),
is characterized by two type parameters T and TSelf
(stereotyped with «FocalType»), where T represents
the type of the entities and TSelf the class in which T is
encapsulated. The latter is used to represent the type of
the immutable value objects. Parameter T is generated
only if the representation is abstract. The correlation
between T and TSelf is specified by the factory meth-
ods makeSelf and getRep, which are introduced only if
the given species is a root node (rule [[repﬂ??,, o)

Inheritance between species is modeled as a depen-
dency relation stereotyped with «ParameterizedInheri-
tancey (rule [[Fh]]?%’mp’s), which specifies an interme-
diate bound class that instantiates the formal param-
eters of the target factory class. The specializing class
inherits from this bound class via a generalization rela-
tion stereotyped with «Inheritance» (rule [[Fh]]f;']f)

Function declarations are translated into class op-
erations stereotyped with «Methody», which are defined
as function object types (using the parameterized class
Fun). As for property/theorem declarations, they are
represented by UML constraints specified as invariants.

Collections are modeled as concrete singleton fac-
tory classes stereotyped accordingly. This allows us to
ensure that no method invocation is possible on species,
as is the case in Focal. The abstraction of the concrete
representation is achieved through the declaration of
an inner class Self. This class is declared with a private
constructor and a private read-only attribute to obtain
the desired encapsulation. The type of the immutable
value objects is fixed definitely through the use of the
«Implements» stereotype. In essence, the type param-
eters T and TSelf are instantiated such that T is sub-
stituted for a concrete type and TSelf is substituted for
the inner class Self created on purpose.

op-param dir ident [: type |

option class ident [(cl-param {, cl-param}™) |
[binds bind {, bind}*] [inherits ident {, ident}* | =
constraint™ attr™ opr™ class™ end

ident : class [> class-type] | ident : opaqueExpr [> type]

class-type | Integer | Boolean | UnlimitedNatural | String

Um = decl”
decl = class | constraint | opaque | dep
class =
option = [visibility | [final | abstract]
visibility = public | private | protected
cl-param =
class-type = ident | bind
type =
bind = ident<subs [, subs™]|>
subs = ident — ident
opr =

option [static] operation ident ([op-param {, op-param}™* |)
| redefines ident {, ident}™]

at-option property ident [: type | [redefines ident {, ident}™]

[body][: type][in lang | end

[restricts ident {, ident}*] = opaque end

dir = in | inout | out | return
attr =
at-option = [visibility | [static] [final] [readOnly]
opaque = [visibility | opaqueExpr ident =
constraint = [visibility | constraint ident
dep = [visibility | dependency ident

(ident {, ident}* --» ident {, ident}*)

Fig. 1 Syntax for UML Static Constructs

4.3 Implementation

Our implementation consists of two parts. In the first
part, we define a UML profile for the Focal specification
language through the use of the UML2 Eclipse plug-in.
This plug-in provides an implementation of the UML 2.1
metamodel and its integrated OCL checker allows us to
validate the constraints defined in our profile. The abil-
ity to specify statically defined profiles also facilitates
the definition of the operations and derived attributes
characterizing each stereotype constituting our profile.
This step is essential as it provides the necessary tool to
validate the UML models to which our profile is applied.
In fact, each OCL constraint specified in our profile is
parsed and evaluated at runtime. This mechanism of-
fers a convenient way to validate the soundness of our
transformation. The second part concerns the develop-
ment of an XSLT stylesheet that specifies the rules to
transform a Focal specification generated in FocDoc for-
mat [13] (an XML schema used by the compiler for doc-
umentation) into a UML model expressed in the XMI
interchange format.

5 Soundness

In this section, we present how the soundness of our
transformation can be established. Here, by soundness,
we mean that the transformation of a well-typed Fo-
cal specification results in a well-formed UML model.
We write A, to denote the UML profile established for
the Focal specification language. To simplify, we con-

sider A, to be a list of UML constraints @1, ..., ®,,.
Symbol U is used to denote a UML model, which rep-
resents a list of construct declarations Ds,...,D,, as
described by the abstract syntax shown in Figure 1.
We write A,(D;) to denote the list of constraints that
relates to the current declaration D; when profile A,
is applied. Finally, we write A,, to denote the UML
metamodel, which is considered to be a list of UML
constraints (2, ..., {2,. Similarly, A,,(D;) denotes the
list of constraints relative to a given construct declara-
tion D;. The soundness theorem is the following (due
to space restrictions, we omit the corresponding proof):

Theorem 1 (Soundness) Let F a well-typed Focal
specification within the context I’ s.t. F = &1,...,&n
and where each &; is either a species S or a collec-
tion C. Let U be the UML model obtained when apply-
ing the transformation rule [F]r. Our transformation
is sound if the following conditions hold:

1. Ay, Ay ¥ L

2. For each D; € U,
- VQJ € Am(’Dl), I+ Qj,'
— VP, € Ap(’Di), ' &y,

The first condition specifies that the constraints
within profile A, must not introduce any inconsistency
w.r.t. the well-formedness rules of the UML metamodel
A,n. The second condition states that I/ must satisfy
both the well-formedness rules of the UML metamodel
and the constraints within profile A,.

The previous theorem essentially states that typ-
ing is preserved from Focal to UML (even if the well-

Focal Species:
. . RE GE AT oP
public abstract species s HP]]F.rep,s [Iw]rs = [RIr.s [Pl [[Tep]]F.P.Fh.J_ [[M]]r,p,ph,S,J_ end
[sIr = DE

[Thlr P rep,s

Representation and Parameter Declarations:

. . .. RE PA
Given P = p1 © In,...,pn © I, with © € {is, in} : [[Pﬂr,rep,s =(lpr0 Il]]F,Pl,s s oo [P © In]r s s Hrep]][‘,s)
with Py = Qand P, = p1 O I1,...,pn-1O In_1

. . c; - T : focalType
[pi © Llr.p;.s = [ei in 7lr.p;.s | [ci is Silr. ey 7|rr ype, } £ P(S)rep = L
type lei is Silr,py,s = {4 oo YPEIPiciiss;
i i . — e, : E 3
le: in rlr.p, s = ei: opaqueExpr in [r]rp, 4 selfTyper p, c;iss; otherwise

c; - Self : focalType,

[]]PA T : focalType, T'Self : focalType if rep = L T
re = sel er P ociisS, =
e TSelf : focalType otherwise YPED. Py ciies; ¢; : collection is [S;]](I‘,Oﬁjtcl
s:]]const _]]const | [5a.()Hconst [ﬂconst 8¢; <T = ci - T, TSelf = c; - Self >s if I'(sq;).rep = L
= [s sq. (a1,...,a . s = .
I,Pj.c; 401, P;c; a; \41 Fr,Pye; i3, P,eq sq; <TSelf — c; - Self > otherwise
sq; la1lr,p;,81,0q, @Ig, s+ +s laglr P, 5,.pq, 01
" ppa Ofar >t B PSP Ofapt L ie pisy,)rep = L
const <T —c¢;- T, TSelf — c; - Self >¢)
[[Sq,i (a1, .. af)]]F,PL,rL =
sq; la1lr,p;,s1.pq; 01g7 5+ +» lIaf]]F,Pi,Sf,qu PPN otherwise
<TSelf — c; - Self>s
with pg, © Igy, ... »Pay © qu = F(sqi).’P, S1=0and S5 = {(alvplI1)7 B (af—lquf,l)}

o] lexlr.p; sy eqp inrq,, if ak = ex A pgy ©lg, = eqy inTg,
ag||r,P;,Sy,pq, Olq, — .
TSk Py Olgy . = = i

ﬂck]]pyp“qu is Sq, ifap = cr A pg, ©Ig, = cq, i5Sq,

ex] _ <eq, —>€;> if Je;jinT; € P; s.t. ej = e

kI, P;,S;. e in - . .
ik €qE T <egq, — idi> otherwise
where id; is a new identifier s.t.,

subs
opaqueExpr id), = ey : [[qu]]p p;,s,, in "Focal” end

s P

<cgqy - T — repBind - Pi.Brcqy ep > selfBindg,ch,ck if F(qu).rep =1

[eklr, Py eq, isSq, = .
qy ke otherwise

selfBind B.cqy, ck

. o cjis S5 ifJdcjis S; € Py sit. ¢j = ¢y
with 8 = { 4 otherwise

<elfBind - <cg, - Self = ¢k Self, cq x> =1
Freap e ey, - Self — ¢j - Self, cqy — ¢;> if B =c;is S,

c;- T if3=cjis S; N I'(Sj)rep=_1
type : :
repBind 5, Picqp ek = IITJ‘HI“,Pi,L ifB=c;isS; AN I'(Sj)rep=r;

type
[[F(ck).rep]]pyygy% otherwise

Factory Methods for the Representation:

oP protected abstract method makeSelf (in = : repType r p ..., , return y : selfBind,)
re =
[p]]F’P’F’L’” protected abstract method getRep (in z : selfBind, , return y : repTypeF,p,,,.ep)

when I', = 0
T if rep = L TSelf ifa=_1
epType = selfBindy, = .
replype r p rep {IIT]]FPLlfT‘prT ! {c::Self ifa=c

Types:
Given a list of parameter declarations P and « either referencing a collection or set to L :
type type type typ type
[7lr pa = [drpa | [tlr po | 11— Tzﬂr o | 1 % 2] e | [self] 0
[]]type cj-Self if 3 c;is S; € P s.it.cj =c [[t]]type [lf]]type TSelf iifa= 1
c = = se =
IPa ¢ :: Self otherwise TP TP ¢ Self ifa=c
pe
[—>7'2]]Fpa = F7m<A—>[[7'1]]FPm B — [[7'2]11“ Po>f [[7'1*7'2]]1“13@ *Pa7'7“<A—>[[Tl]]FPm [[7'2]]1" Pa>f

Fig. 2 Transformation Rules: Focal to UML (1)

Inheritance:

. DE DE
Given Fh = Shl L Shvn : [[Fh]]l".?.rep,s = [[Shl]]F,P,'rep,s

D D E
HS}L,;]]F,’P,rcp,s = ﬂsqi]]l“,?,rcp,s = [[Sqi (a17 s

with s - sq, - bound referencing the bound class,

. . . prm
species s - s, - bound instantiates s,. [S}.)
P ; ;i I, P,rep

prm

prm
lIShi]]F.’P.rep

prm
= lI‘SlIi]]F,P,'rep | [[Sq,;(alv B a!})]]F,’P,'r‘ep
<T — T, TSelf — TSelf>

prm
ﬂsqri]]F,P,rep =
< TSelf — TSelf>

D
70‘9)]]1—‘,7’,1‘617,5 =

AT OP
[Sh;Ir.0,1 replr p g, 1 [allMethods(I", Sy)lr,».0,s,1 end

if I'(sq;)rep=1 Arep= 1

t.
<T = [r] 5 oL, TSelf — TSelf> if ['(sq;).rep = L A rep =7

otherwise

prm prm
[sq; (a1, s a9)lr porep = laalr,p.51,pq 0145+ s [aglr, P sg.pg, 01445 [50; 10 P rep
with pg; © Igq,. .. yPag © qu = F(sqi).P, Si=0and S, = (al,pql), RN (ag,l,pqg_l)
GE . GE GE GE
[Iw]r s = inheritance [Sh]r,,. - 2 [ShmIr,s [Sklre = [sq;1re = [sq;(a1,...,a9)lp o =5 sq; - bound

DE
cee [[Shm,HF,P,'rep.s

public paramlInheritance s - sy, - de (s -—-» s4;,) =

substitutes(ﬂshi]]I;r’p’mp) bound s - s4; - bound

end

Fig. 3 Transformation Rules: Focal to UML (2)

formedness rules are said to characterize the semantics
of UML). Another form of soundness, not considered
in this paper, would be to establish that the seman-
tics of Focal is also preserved by the transformation,
which is equivalent to show that there exists a model
of the UML metamodel (together with the profile), for
which the well-formedness rules are correct and which
is compatible with a model of Focal.

6 An Application Example

To illustrate our transformation process, we consider a
relatively concise example extracted from the formaliza-
tion realized within the EDEMOI project. This concerns
the specification established for cabin persons. The cor-
responding Focal species is defined as follows:

species cabinPerson (cb is cabinBaggage)
rep;
sig equal in self — self — bool;
sig identityVerified in self — bool;
sig cabinBaggage in self — cb;
property equal reflexive:

all x in self, !equal (x, x);
end

It can be observed that cabinPerson is a parameter-
ized species and its representation is left undefined. We
also assume that the representation of species cabin-
Baggage is still abstract. To give an example of inheri-
tance and show how the abstraction of a concrete repre-
sentation is handled during the transformation process,
we also introduce collection cabinPerson col, which
provides an implementation for species cabinPerson:

collection cabinPerson col
implements cabinPerson (bag)

rep = string * bag * bool;

let name (s in self) in string = #first (s);

let cabinBaggage (s in self) in bag =
#first (#scnd (s));

let identityVerified
#scnd (#scnd (s));

end

(s in self) in bool =

In this collection, the representation is specified as a
triple, with the functions name, cabinBaggage and iden-
tity Verified defined accordingly. In the “implements”
clause, species cabinPerson is instantiated with bag,
which is a collection derived from cabinBaggage.

Now, by applying the transformation rules described
in Section 4, the UML classes shown in Figure 4 (us-
ing the corresponding graphical visualization) are ob-
tained, where we write TSelf — Bool for the bound
class Fun<TSelf, Bool>.

7 Conclusion

In this paper, we present a formal and sound frame-
work for the transformation of Focal specifications into
UML models, with the objective to provide a graphical
documentation for developers. The transformation rules
proposed attempt to provide an appropriate design pat-
tern for the representation of algebraic structures and
algorithms within an object-oriented paradigm. Hence,
from the UML models produced, it may be possible to
map a Focal specification to any appropriate object-
oriented programming language, e.g. Java or C#.

CbT : Class
Chself : Class
slss Cb : Class == CabinBaggage=<CbT,ChSelf>
T Class
TSelf : Class
“Speciess
= CabinPerson

equal_reflexive

|
cabinPerson {all x in seff, lequal(x, x)}

n_ch () Cb
makeSeif (x - T) - Tself

getRep (x TSelf) - T

+ equal () - TSelf -> TSelf -> Bool

+ IdentityVerified () - TSelf -> Bool

+ cabinBaggage () - TSelf > ChSelf

«mplementss
ChT -> Int, CbSelf -» Bag::Self, Ch - > Bag,
T -> Pair<string, Pair <Bag::elf,Boo|> >, TSelf -> CabinPerson_col::Seil

_ «Collections
=/ CabinPerson_col

Attribute

- uniguelnstance : CabinPerson_col

Gperation
- CahinPerson_col ¢}

+ instance ()~ CabinPerson_col

cabinPerson_ck () Ch _seif ()
makeSelf (% : Pair<5tring, Pair <Bag::Self,Boal> >) Self

getRep (x : Self) Pair<String, Pair <Bag: Self, Bool> >

+ equal () : Self -> Self -> Bool

+ identityerified () : Self -> Bool

+ cabinBagaage () : Self -> Bag:Self

lseir

Antribute
- rep ; Pair<String, Pair<Bag: Self, Bool> >
Operation

Fig. 4 CabinPerson Classes

Regarding future work, we expect to use the present
transformation rules as a basis to generate higher-level
views that would be more pertinent for certification au-
thorities or end-users (not only for developers). Another
perspective is to apply our transformation process to
more concrete specifications (the models realized for
the EDEMOI project are quite abstract), such as the
standard library of Focal, which consists of a large for-
malization of Computer Algebra. In this way, it would
be possible to see whether the generated UML mod-
els are fairly comprehensible and can be used for man-
aging libraries. Finally, we aim to generate more dy-
namic views of the formal models (sequence and state-
transition diagrams) through static analysis performed
on Focal specifications.

References

1. R. Bonichon, D. Delahaye, and D. Doligez. Zenon:
An Extensible Automated Theorem Prover Pro-
ducing Checkable Proofs. In Logic for Programming
Artificial Intelligence and Reasoning (LPAR), vol-
ume 4790 of LNCS/LNAI, pages 151-165. Springer,
Oct. 2007.

2. O. Caron, B. Carré, A. Muller, and G. Van-
wormhoudt. An OCL Formulation of UML2 Tem-
plate Binding. In UML Modeling Languages and
Applications (UML), volume 3273 of LNCS, pages
27-40. Springer, Oct. 2004.

3. D. Delahaye, J.-F. Etienne, and V. Viguié Donzeau-
Gouge. Certifying Airport Security Regulations
using the Focal Environment. In Formal Meth-
ods (FM), volume 4085 of LNCS, pages 48-63.
Springer, Aug. 2006.

4. D. Delahaye, J.-F. Etienne, and V. Viguié Donzeau-
Gouge. Reasoning about Airport Security Reg-

10.

11.

12.

13.

14.

15.

16.

ulations using the Focal Environment. In In-
ternational Symposium on Leveraging Applications
of Formal Methods, Verification and Validation
(ISoLA), pages 45-52. IEEE CS Press, Nov. 2006.
D. Delahaye, J.-F. Etienne, and V. Viguié Donzeau-
Gouge. Producing UML Models from Focal Speci-
fications: An Application to Airport Security Reg-
ulations. In Theoretical Aspects of Software Engi-
neering (TASE). IEEE CS Press, June 2008.

C. Dubois, T. Hardin, and V. Vigui¢ Donzeau-
Gouge. Building Certified Components within Fo-
cal. In Trends in Functional Programming (TFP),
volume 5, pages 33—48. Intellect, Nov. 2004.

S. Dupuy, Y. Ledru, and M. Chabre-Peccoud. An
Overview of RoZ: A Tool for Integrating UML and
Z specifications. In Conference on Advanced Infor-
mation Systems Engineering (CAiSE), volume 1789
of LNCS, pages 417-430. Springer, June 2000.

T. Goldschmidt, S. Becker, and A. Uhl. Clas-
sification of Concrete Textual Syntax Mapping
Approaches. In FEuropean Conference on Model
Driven Architecture - Foundations and Applica-
tions (ECMDA-FA), volume 5095 of LNCS, pages
169-184. Springer, June 2008.

A. Idani and Y. Ledru. Dynamic Graphical UML
Views from Formal B Specifications. International
Journal of Information and Software Technology,
48(3):154-169, Mar. 2006.

F. Jouault and I. Kurtev. On the Interoperabil-
ity of Model-to-Model Transformation Languages.
Science of Computer Programming, 68(3):114-137,
Oct. 2007.

S.-K. Kim and D. A. Carrington. A Formal Map-
ping between UML Models and Object-Z Specifica-
tions. In International Z and B Conference (ZB),
volume 1878 of LNCS, pages 2—21. Springer, Sept.
2000.

R. Laleau and F. Polack. Coming and Going from
UML to B: A Proposal to Support Traceability in
Rigorous IS Development. In International Z and
B Conference (ZB), volume 2272 of LNCS, pages
517-534. Springer, Jan. 2002.

M. Maarek and V. Prevosto. FocDoc: The Doc-
umentation System of Foc. In Calculemus. LIP6,
Sept. 2003.

The EDEMOI Project, 2003.
http://www-1sr.imag.fr/EDEMOI/.

The Focal Development Team. Focal, version 0.3.1.
CNAM/INRIA/LIP6, May 2005.

Available at: http://focal.inria.fr/.

The Object Management Group. Unified Modeling
Language: Superstructure, version 2.1.1, Feb. 2007.
Available at: http://www.omg.org/.

BIBLIOGRAPHY

[1] Jean-Raymond Abrial. The B Book, Assigning Programs to Meanings. Cambridge
University Press, Cambridge (UK), 1996. ISBN 0521496195.

[2] Annie I. Ant6n, Travis D. Breaux, Dimitris Karagiannis, and John Mylopoulos,
editors. International Workshop on Requirements Engineering and Law (RELAW), in
conjunction with the International Requirements Engineering Conference (RE). IEEE
CS Press, September 2008.

[3] Maria Virginia Aponte and Roberto Di Cosmo. Type Isomorphisms for Module
Signatures. In Programming Languages: Implementations, Logics, and Programs
(PLILP), volume 1140 of LNCS, pages 334—346, Aachen (Germany), September
1996. Springer.

[4] Maria Virginia Aponte, Roberto Di Cosmo, and Catherine Dubois. Signature
subtyping modulo type isomorphisms, 1997. Draft.

[5] Dennis S. Arnon, George E. Collins, and Scott McCallum. Cylindrical Algebraic
Decomposition I: The Basic Algorithm. SIAM Journal on Computing, 13(4):865-877,
November 1984.

[6] Dennis S. Arnon, George E. Collins, and Scott McCallum. Cylindrical Algebraic
Decomposition II: An Adjacency Algorithm for the Plane. SIAM Journal on
Computing, 13(4):878-889, November 1984.

[7] Agnes Arnould, Laurent Fuchs, Marc Aiguier, and Thibaud Brunet. Automatic
Generation of Functional Programs from CASL Specifications. In International
Conference on Software Engineering Advances (ICSEA), page 34, Papeete (Tahiti,
French Polynesia), October 2006. IEEE CS Press.

[8] Egidio Astesiano, Michel Bidoit, Hélene Kirchner, Bernd Krieg-Briickner, Pe-
ter D. Mosses, Donald Sannella, and Andrzej Tarlecki. CASL: The Common
Algebraic Specification Language. Theoretical Computer Science (TCS), 286(2):153—
196, September 2002.

[9] Isabelle Attali and Didier Parigot. Integrating Natural Semantics and Attribute
Grammars: The Minotaur System. Technical Report 2339, INRIA, September 1994.

[10] Lennart Augustsson. A Compiler for Lazy ML. In LISP and Functional Programming
(LFP), pages 218-227, Austin (TX, USA), August 1984. ACM Press.

[11] Serge Autexier, Jacques Calmet, David Delahaye, Patrick D. F. Ion, Laurence
Rideau, Renaud Rioboo, and Alan P. Sexton, editors. Intelligent Computer Math-
ematics, 10th International Conference, AISC 2010, 17th Symposium, Calculemus
2010, and gth International Conference, MKM 2010, Paris, France, July 5-10, 2010.

163

164

Bibliography

Proceedings, volume 6167 of LNCS, Paris (France), July 2010. Springer. ISBN
978-3-642-14127-0.

[12] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Ben-
jamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie
Weirich, and Steve Zdancewic. Mechanized Metatheory for the Masses: The
PorLMARK Challenge. In Theorem Proving in Higher Order Logics (TPHOLs),
volume 3603 of LNCS, pages 50-65, Oxford (UK), August 2005. Springer.

[13] Philippe Ayrault, Matthieu Carlier, David Delahaye, Catherine Dubois, Damien
Doligez, Lionel Habib, Thérese Hardin, Mathieu Jaume, Charles Morisset,
Francois Pessaux, Renaud Rioboo, and Pierre Weis. Trusted Software within
Focal. In Computer & Electronics Security Applications Rendez-Vous (C&ESAR),
Rennes (France), December 2008.

[14] Henk Barendregt and Arjeh M. Cohen. Electronic Communication of Mathe-
matics and the Interaction of Computer Algebra Systems and Proof Assistants.
Journal of Symbolic Computation (JSC), 32(1/2):3—22, July/August 2001.

[15] Saugata Basu, Richard Pollack, and Marie-Francoise Roy. Algorithms in Real
Algebraic Geometry, volume 10 of Algorithms and Computation in Mathematics.
Springer, Secausus (NJ, USA), 2nd edition, August 2006. ISBN 3540330984.

[16] Bernhard Beckert, Reiner Hdhnle, and Peter H. Schmitt. The Even More Liberal-
ized 6-Rule in Free Variable Semantic Tableaux. In Computational Logic and Proof
Theory: Kurt Godel Colloquium (KGC), volume 713 of LNCS, pages 108-119, Brno
(Czech Republic), August 1993. Springer.

[17] Stefan Berghofer. Program Extraction in Simply-Typed Higher Order Logic. In
Types for Proofs and Programs (TYPES), volume 2646 of LNCS, pages 21-38, Berg
en Dal (Netherlands), April 2002. Springer.

[18] Stefan Berghofer, Lukas Bulwahn, and Florian Haftmann. Turning Inductive into
Equational Specifications. In Theorem Proving in Higher Order Logics (TPHOLs),
volume 5674 of LNCS, pages 131-146, Munich (Germany), August 2009. Springer.

[19] Stefan Berghofer and Tobias Nipkow. Executing Higher Order Logic. In Types
for Proofs and Programs (TYPES), volume 2277 of LNCS, pages 24—40. Springer,
December 2000.

[20] Karim Berkani, Catherine Dubois, Alain Faivre, and Jérome Falampin. Validation
des regles de base de 1'Atelier B. Technique et Science Informatiques (TSI), 23(7):855—
878, 2004.

[21] Nicolas Bertaux and David Delahaye. Developing Structured Libraries using the
Focal Environment. In Modules and Libraries for Proof Assistants (MLPA), volume
429, pages 2—-10, Montréal (Canada), August 2009. ACM Press.

[22] Marc Bezem, Dimitri Hendriks Hendriks, and Hans De Nivelle. Automated
Proof Construction in Type Theory Using Resolution. Journal of Automated
Reasoning (JAR), 29(3—4):253—275, 2002.

Bibliography

[23] Frédéric Blanqui, Thérese Hardin, and Pierre Weis. On the Implementation
of Construction Functions for Non-free Concrete Data Types. In European
Symposium on Programming (ESOP), volume 4421 of LNCS, pages 95-109, Braga
(Portugal), March 2007. Springer.

[24] Richard Bonichon, David Delahaye, and Damien Doligez. Zenon: An Extensible
Automated Theorem Prover Producing Checkable Proofs. In Logic for Program-
ming Artificial Intelligence and Reasoning (LPAR), volume 4790 of LNCS/LNAI,
pages 151-165, Yerevan (Armenia), October 2007. Springer.

[25] Patrick Borras, Dominique Clément, Thierry Despeyroux, Janet Incerpi, Gilles
Kahn, Bernard Lang, and Valérie Pascual. Centaur: The System. In Practical
Software Development Environments (PSDE), volume 24(2) of SIGPLAN Notices,
pages 14—24, Boston (MA, USA), November 1988. ACM Press.

[26] Sylvain Boulmé. Spécification d'un environnement dédié a la programmation certifiée
de bibliotheques de calcul formel. PhD thesis, Université Pierre et Marie Curie
(Paris 6), December 2000.

[27] Samuel Boutin. Using Reflection to Build Efficient and Certified Decision
Procedures. In Theoretical Aspects of Computer Software (TACS), volume 1281 of
LNCS, pages 515-529, Sendai (Japan), September 1997. Springer.

[28] William S. Brown. The Subresultant PRS Algorithm. ACM Transactions on
Mathematical Software (TOMS), 4(3):237-249, September 1978.

[29] Kim Bruce, Roberto Di Cosmo, and Giuseppe Longo. Provable Isomorphisms of
Type. Mathematical Structures in Computer Science, 2(2):231-247, June 1992.

[30] Olivier Caron, Bernard Carré, Alexis Muller, and Gilles Vanwormhoudt. An
OCL Formulation of UML2 Template Binding. In UML Modeling Languages and
Applications (UML), volume 3273 of LNCS, pages 27-40. Springer, October 2004.

[31] John Cartmell. Generalized Algebraic Theories and Contextual Categories.
Annals of Pure and Applied Logic (APAL), 32:209-243, 1986.

[32] Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz. A
TLA+ Proof System. In Knowledge Exchange: Automated Provers and Proof Assistants
(KEAPPA), volume 418, pages 17-37, Doha (Qatar), November 2008. CEUR-WS.

[33] Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz. Ver-
ifying Safety Properties with the TLA+ Proof System. In International Joint
Conference on Automated Reasoning (IJCAR), volume 6173 of LNCS, pages 142-148,
Edinburgh (UK), July 2010. Springer.

[34] Adam Chlipala. Certified Programming with Dependent Types, 2010.
http://adam.chlipala.net/cpdt/.

[35] Adam Chlipala, Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan
Wisnesky. Effective Interactive Proofs for Higher-Order Imperative Programs. In

165

http://adam.chlipala.net/cpdt/

166

Bibliography

International Conference on Functional Programming (ICFP), pages 79-9o, Edinburgh
(Scotland, UK), August 2009. ACM Press.

[36] Jacek Chrzaszcz. Implementing Modules in the Coq System. In Theorem Proving
in Higher Order Logics (TPHOLs), volume 2758 of LNCS, pages 270286, Rome
(Italy), September 2003. Springer.

[37] George E. Collins. Subresultants and Reduced Polynomial Remainder Sequences.
Journal of the ACM, 14(1):128-142, January 1967.

[38] George E. Collins. Quantifier Elimination for Real Closed Fields by Cylindrical
Algebraic Decomposition. In Automata Theory and Formal Languages, volume 33
of LNCS, pages 134-183, Kaiserslautern (Germany), May 1975. Springer.

[39] Pierre Corbineau. A Declarative Language for the Coq Proof Assistant. In Types
for Proofs and Programs (TYPES), volume 4941 of LNCS, pages 69—84, Cividale
des Friuli (Italy), May 2007. Springer.

[40] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-Directed
Requirements Acquisition. Science of Computer Programming, 20:3-50, 1993.

[41] Daniel De Rauglaudre. Camlp5, version 5.14. INRIA, April 2010.
http://pauillac.inria.fr/~ddr/camlp5/.

[42] David Delahaye. Search2: un outil de recherche dans une bibliotheque de preuves
Coq modulo isomorphismes. Master’s thesis, Université Pierre et Marie Curie
(Paris 6), September 1997.

[43] David Delahaye. Information Retrieval in a Coq Proof Library using Type
Isomorphisms. In Types for Proofs and Programs (TYPES), volume 1956 of LNCS,
pages 131-147, Lokeberg (Sweden), June 1999. Springer.

[44] David Delahaye. A Tactic Language for the System Coq. In Logic for Programming
and Automated Reasoning (LPAR), volume 1955 of LNCS/LNAI, pages 85—95,
Reunion Island (France), November 2000. Springer.

[45] David Delahaye. Conception de langages pour décrire les preuves et les automatisations
dans les outils d’aide a la preuve: une étude dans le cadre du systéeme Coq. PhD thesis,
Université Pierre et Marie Curie (Paris 6), December 2001.

[46] David Delahaye. A Proof Dedicated Meta-Language. In Logical Frameworks and
Meta-Languages (LFM), volume 70(2) of ENTCS, Copenhagen (Denmark), July
2002. Elsevier.

[47] David Delahaye. Free-Style Theorem Proving. In Theorem Proving in Higher Order
Logics (TPHOLs), volume 2410 of LNCS, pages 164-181, Hampton (VA, USA),
August 2002. Springer.

[48] David Delahaye, Roberto Di Cosmo, and Benjamin Werner. Recherche dans
une bibliotheque de preuves Coq en utilisant le type et modulo isomorphismes.
In PRC/GDR de programmation, Pole Preuves et Spécifications Algébriques, Rennes
(France), November 1997.

http://pauillac.inria.fr/~ddr/camlp5/

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

Bibliography

David Delahaye, Catherine Dubois, and Jean-Frédéric Etienne. Extracting Purely
Functional Contents from Logical Inductive Types. In Theorem Proving in Higher
Order Logics (TPHOLs), volume 4732 of LNCS, pages 70-85, Kaiserslautern
(Germany), September 2007. Springer.

David Delahaye, Catherine Dubois, and Pierre-Nicolas Tollitte. ~Généra-
tion de code fonctionnel certifié a partir de spécifications inductives dans
I'environnement Focalize. In Journées Francophones des Langages Applicatifs (JFLA),

Vieux-Port La Ciotat (France), January 2010. INRIA.

David Delahaye and Micaela Mayero. Field: une procédure de décision pour
les nombres réels en Coq. In Journées Francophones des Langages Applicatifs (JFLA),
Pontarlier (France), January 2001. INRIA.

David Delahaye and Micaela Mayero. Dealing with Algebraic Expressions over
a Field in Coq using Maple. Journal of Symbolic Computation (JSC), 39(5):569-592,
May 2005.

David Delahaye and Micaela Mayero. Quantifier Elimination over Algebraically
Closed Fields in a Proof Assistant using a Computer Algebra System. In
Symposium on the Integration of Symbolic Computation and Mechanized Reasoning
(Calculemus), volume 151(1) of ENTCS, pages 57—73, University of Newcastle
upon Tyn (UK), July 2005. Elsevier.

David Delahaye, Jean-Frédéric Etienne, and Véronique Viguié Donzeau-Gouge.
Certifying Airport Security Regulations using the Focal Environment. In Formal
Methods (FM), volume 4085 of LNCS, pages 48-63, Hamilton, Ontario (Canada),
August 2006. Springer.

David Delahaye, Jean-Frédéric Etienne, and Véronique Viguié Donzeau-Gouge.
Modeling Airport Security Regulations in Focal. In Regulations Modelling and their
Validation & Verification (REMO2V), pages 806-812, Luxembourg (Grand-Duchy
of Luxembourg), June 2006. Presses Universitaires de Namur.

David Delahaye, Jean-Frédéric Etienne, and Véronique Viguié Donzeau-Gouge.
Reasoning about Airport Security Regulations using the Focal Environment. In
International Symposium on Leveraging Applications of Formal Methods, Verification
and Validation (ISoLA), pages 45-52, Paphos (Cyprus), November 2006. IEEE CS
Press.

David Delahaye, Jean-Frédéric Etienne, and Véronique Viguié Donzeau-Gouge.
A Formal and Sound Transformation from Focal to UML: An Application to
Airport Security Regulations. Innovations in Systems and Software Engineering
(ISSE) NASA Journal, 4(3):267-274, September 2008.

David Delahaye, Jean-Frédéric Etienne, and Véronique Viguié Donzeau-Gouge.
Formal Modeling of Airport Security Regulations using the Focal Environment.
In Requirements Engineering and Law (RELAW), Barcelona (Spain), September
2008. IEEE CS Press.

167

168

Bibliography

[59] David Delahaye, Jean-Frédéric Etienne, and Véronique Viguié Donzeau-Gouge.
Producing UML Models from Focal Specifications: An Application to Airport
Security Regulations. In Theoretical Aspects of Software Engineering (TASE), pages
121-124, Nanjing (China), June 2008. IEEE CS Press.

[60] David Delahaye, Jean-Frédéric Etienne, and Véronique Viguié Donzeau-Gouge.
Modeling and Certifying Airport Security Regulations. Defense, Security and Strate-
gies. Nova Science Publishers, Inc., apr 2010. ISBN 9781608768936.

[61] Roberto Di Cosmo. Isomorphisms of Types. PhD thesis, Universita di Pisa, January
1993.

[62] Roberto Di Cosmo. Isomorphisms of Types: from A-calculus to information retrieval
and language design. Progress in Theoretical Computer Science. Birkhauser, 1995.
ISBN-0-8176-3763-X.

[63] Catherine Dubois and Richard Gayraud. Compilation de la sémantique naturelle
vers ML. In Journées Francophones des Langages Applicatifs (JFLA), Morzine-Avoriaz
(France), February 1999. INRIA.

[64] Sophie Dupuy, Yves Ledru, and Monique Chabre-Peccoud. An Overview of
RoZ: A Tool for Integrating UML and Z Specifications. In Conference on Advanced
Information Systems Engineering (CAiSE), volume 1789 of LNCS, pages 417-430.
Springer, June 2000.

[65] Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. Journal of
Symbolic Logic (JSL), 57(3), September 1992.

[66] Jean-Frédéric Etienne. Certifying Airport Security Regulations using the Focal
Environment. PhD thesis, Conservatoire National des Arts et Métiers (CNAM),
July 2008.

[67] Stéphane Fechter. Sémantique des traits orientés objet de Focal. PhD thesis, Univer-
sité Pierre et Marie Curie (Paris 6), July 2005.

[68] John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nico Plat, and Marcel
Verhoef. Validated Designs for Object-Oriented Systems. Springer, 1st edition, 2005.
ISBN 978-1-85233-881-7.

[69] Murdoch Gabbay and Andrew M. Pitts. A New Approach to Abstract Syntax
Involving Binders. In Logic in Computer Science (LICS), pages 214—224, Trento
(Italy), July 1999. IEEE CS Press.

[70] Mariusz Giero and Freek Wiedijk. MMode, A Mizar Mode for the Proof Assistant
Coq. Technical Report NIII-Ro333, University of Nijmegen, Nijmegen (The
Netherlands), 2003.

[71] Martin Giese and Wolfgang Ahrendt. Hilbert’s e-terms in Automated Theorem
Proving. In Analytic Tableaux and Related Methods (TABLEAUX), volume 1617 of
LNALI, pages 171-185, Saratoga Springs (NY, USA), June 1999. Springer.

Bibliography

[72] Thomas Goldschmidt, Steffen Becker, and Axel Uhl. Classification of Concrete
Textual Syntax Mapping Approaches. In European Conference on Model Driven
Architecture - Foundations and Applications (ECMDA-FA), volume 5095 of LNCS,
pages 169-184. Springer, June 2008.

[73] Andrew D. Gordon and Thomas F. Melham. Five Axioms of Alpha-Conversion.
In Theorem Proving in Higher Order Logics (TPHOLSs), volume 1125 of LNCS, pages
173-190, Turku (Finland), August 1996. Springer.

[74] Michael J. C. Gordon, Robin Milner, Lockwood Morris, Malcolm C. Newey, and
Christopher P. Wadsworth. A Metalanguage for Interactive Proof in LCF. In
Principles of Programming Languages (POPL), pages 119-130, Tucson (AZ, USA),
January 1978. ACM Press.

[75] Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh
LCF: A Mechanised Logic of Computation, volume 78 of LNCS. Springer, 1979.

[76] Nicolas Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Aca-
demic Publishers, Norwell (MA, USA), 1993. ISBN 0-7923-9311-2.

[77] Thérése Hardin and Renaud Rioboo. Les objets des mathématiques. RSTI -
L’objet, 10(4):83-118, October 2004.

[78] John Harrison. Metatheory and Reflection in Theorem Proving: A Survey and
Critique. Technical Report CRC-053, SRI Cambridge, Cambridge (UK), February

1995.

[79] John Harrison. A Mizar Mode for HOL. In Theorem Proving in Higher Order Logics
(TPHOLs), volume 1125 of LNCS, pages 203—220, Turku (Finland), August 1996.
Springer.

[80] John Harrison. Proof Style. In Types for Proofs and Programs (TYPES), volume
1512 of LNCS, pages 154-172, Aussois (France), September 1996. Springer.

[81] David Hilbert and Paul Bernays. Grundlagen der Mathematik, volume 2. Springer,
1939.

[82] Joe Hurd. Integrating Gandalf and HOL. In Theorem Proving in Higher Order Logics
(TPHOLs), volume 1690 of LNCS, pages 311322, Nice (France), September 1999.
Springer.

[83] Akram Idani and Yves Ledru. Dynamic Graphical UML Views from Formal
B Specifications. International Journal of Information and Software Technology,
48(3):154—169, March 2006.

[84] Akram Idani and Yves Ledru. Object Oriented Concepts Identification from
Formal B Specifications. Formal Methods in System Design, 30(3):217-232, June
2007.

169

170

Bibliography

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

Eric Jaeger and Catherine Dubois. Why Would You Trust B? In Logic for
Programming, Artificial Intelligence and Reasoning (LPAR), volume 4790 of LNCS,
pages 288-302, Yerevan (Armenia), October 2007. Springer.

Mathieu Jaume and Charles Morisset. A Formal Approach to Implement Access
Control. Journal of Information Assurance and Security (JIAS), 1(2):137-148, June
2006.

Fairouz Kamareddine and Joe B. Wells. Computerizing Mathematical Text with
MathLang. In Logical and Semantic Frameworks, with Applications (LSFA), volume
205 of ENTCS, pages 5-30. Elsevier, April 2008.

Eunsuk Kang and Mark Aagaard. Improving the Usability of HOL Through Con-
trolled Automation Tactics. In Theorem Proving in Higher Order Logics (TPHOLSs),
volume 4732 of LNCS, pages 157-172, Kaiserslautern (Germany), September
2007. Springer.

Soon-Kyeong Kim and David A. Carrington. A Formal Mapping between UML
Models and Object-Z Specifications. In International Z and B Conference (ZB),
volume 1878 of LNCS, pages 2—21. Springer, September 2000.

Régine Laleau and Michel Lemoine, editors. International Workshop on Regu-
lations Modelling and their Validation and Verification (REMO2V), in conjunction
with the Conference on Advanced Information Systems Engineering (CAiSE). Presses
Universitaires de Namur, June 2006.

Régine Laleau and Amel Mammar. An Overview of a Method and its Support
Tool for Generating B Specifications from UML Notations. In Automated Software
Engineering (ASE), pages 269—272, Grenoble (France), September 2000. IEEE CS
Press.

Régine Laleau and Fiona Polack. Coming and Going from UML to B: A Proposal
to Support Traceability in Rigorous IS Development. In International Z and B
Conference (ZB), volume 2272 of LNCS, pages 517-534. Springer, January 2002.

Régine Laleau, Sylvie Vignes, Yves Ledru, Michel Lemoine, Didier Bert,
Véronique Donzeau-Gouge, Catherine Dubois, and Fabien Peureux. Appli-
cation of Requirements Engineering Techniques to the Analysis of Civil Aviation
Security Standards. In Situational Requirements Engineering Processes (SREP),
pages 91-106, Paris (France), August 2005. University of Limerick (Ireland).

Leslie Lamport. The Temporal Logic of Actions. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 16(3):872—923, May 1994.

Leslie Lamport. How to Write a Proof. American Mathematical Monthly, 102(7):600—
608, August 1995.

Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Boston (MA, USA), 1st edition, 2003.
ISBN 978-0-321-14306-8.

Bibliography

[97] Albert C. Leisenring. Mathematical Logic and Hilbert’s e-Symbol. MacDonald
Technical and Scientific, London, 1969. ISBN 0356026795.

[98] Pierre Letouzey. A New Extraction for Coq. In Types for Proofs and Programs
(TYPES), volume 2646 of LNCS, pages 200-219, Berg en Dal (The Netherlands),
April 2002. Springer.

[99] Manuel Maarek and Virgile Prevosto. FocDoc: The Documentation System of
Foc. In Thérese Hardin and Renaud Rioboo, editors, Symposium on the Integration
of Symbolic Computation and Mechanized Reasoning (Calculemus), Roma (Italy),
September 2003. LIP6.

[100] Lena Magnusson. The Implementation of ALF - A Proof Editor Based on Martin-
Lof’s Monomorphic Type Theory with Explicit Substitution. PhD thesis, Chalmers
University of Technology and Goteborg University, January 1995.

[101] Assia Mahboubi. Implementing the Cylindrical Algebraic Decomposition within
the Coq System. Mathematical Structures in Computer Science (MSCS), 17(1):99-127,
March 2007.

[102] Louis Mandel and Marc Pouzet. Reactive-ML, version 1.07.06. LRI, January 2010.
http://rml.1ri.fr/.

[103] William McCune and Olga Shumsky. System Description: IVY. In Conference on
Automated Deduction (CADE), volume 1831 of LNCS, pages 401—405, Pittsburgh
(PA, USA), June 2000. Springer.

[104] Nicholas A. Merriam and Michael D. Harrison. What is Wrong with GUISs for
Theorem Provers? In User Interfaces for Theorem Provers (UITP), Sophia Antipolis
(France), September 1997.

[105] David Overton, Zoltan Somogyi, and Peter J. Stuckey. Constraint-Based Mode
Analysis of Mercury. In Principles and Practice of Declarative Programming (PPDP),
pages 109-120, Pittsburgh (PA, USA), October 2002. ACM Press.

[106] Christine Paulin-Mohring and Benjamin Werner. Synthesis of ML Programs in
the System Coq. Journal of Symbolic Computation (JSC), 15(5/6):607-640, May
1993.

[107] Laurence C. Paulson and Kong Woei Susanto. Source-Level Proof Reconstruction
for Interactive Theorem Proving. In Theorem Proving in Higher Order Logics
(TPHOLs), LNCS. Springer, September 2007.

[108] Mikael Pettersson. A Compiler for Natural Semantics. In Compiler Construction
(CC), volume 1060 of LNCS, pages 177-191, Linkoping (Sweden), April 1996.
Springer.

[109] Frank Pfenning and Conal Elliott. Higher-Order Abstract Syntax. In Programming
Language Design and Implementation (PLDI), volume 23(7) of SIGPLAN Notices,
pages 199—208, Atlanta (GA, USA), June 1988. ACM Press.

171

http://rml.lri.fr/

172

Bibliography

[110] Marc Pouzet. Lucid Synchrone, version 3.0. LRI, April 2006.
http://www.lri.fr/"pouzet/lucid-synchrone/.

[111] Virgile Prevosto. Conception et implantation du langage Foc pour le développement de
logiciels certifiés. PhD thesis, Université Pierre et Marie Curie (Paris 6), September
2003.

[112] Virgile Prevosto, Damien Doligez, and Thérése Hardin. Algebraic Structures and
Dependent Records. In Theorem Proving in Higher Order Logics (TPHOLs), volume
2410 of LNCS, pages 298-313, Hampton (VA, USA), August 2002. Springer.

[113] Renaud Rioboo. Invariants for the Focal Language. Annals of Mathematics and
Artificial Intelligence (AMAI), 56(3—4):273—-296, August 2009.

[114] Mikael Rittri. Using Types as Search Keys in Function Libraries. Journal of
Functional Programming (JFP), 1(1):171-89, January 1991.

[115] Sergei Soloviev. The Category of Finite Sets and Cartesian Closed Categories.
Journal of Soviet Mathematics, 22(3):154—172, June 1983.

[116] Elie Soubiran. A Unified Framework and a Transparent Name-Space for the Coq
Module System. In Modules and Libraries for Proof Assistants (MLPA), volume 429,
pages 38—45, Montréal (Canada), August 2009. ACM Press.

[117] Antonis Stampoulis and Zhong Shao. VeriML: Typed Computation of Logical
Terms inside a Language with Effects. In International Conference on Functional
Programming (ICFP), SIGPLAN Notices, Baltimore (MD, USA), September 2010.
ACM Press. To appear.

[118] Robert F. Stark. Input/Output Dependencies of Normal Logic Programs. Journal
of Logic and Computation, 4(3):249-262, June 1994.

[119] Adam W. Strzeboriski. Cylindrical Algebraic Decomposition using Validated
Numerics. Journal of Symbolic Computation (JSC), 41(9):1021-1038, September
2006.

[120] Don Syme. Three Tactic Theorem Proving. In Theorem Proving in Higher Order
Logics (TPHOLs), volume 1690 of LNCS, pages 203—220, Nice (France), September

1999. Springer.

[121] Tanel Tammet. Gandalf, version c-2.6.r1. Chalmers University of Technology, June
2003. http://deepthought.ttu.ee/it/gandalf/.

[122] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry. University
of California Press, Berkeley (CA, USA), 2nd edition, May 1951.

[123] The ACL2 Development Team. ACL2, version 3.4. University of Texas, August
2008. http://www.cs.utexas.edu/users/moore/acl2/.

[124] The Alfa Development Team. Alfa. Chalmers University of Technology, August
2003. http://www.cs.chalmers.se/ hallgren/Alfa/.

http://www.lri.fr/~pouzet/lucid-synchrone/
http://deepthought.ttu.ee/it/gandalf/
http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.chalmers.se/~hallgren/Alfa/

Bibliography
[125] The Axiom Developers. Axiom: The Scientific Computation System. Math Action,
2007. http://axiom-developer.org/
[126] The Calculemus Interest Group, 2010. http://www.calculemus.net/.

[127] The Caml Development Team. Cam/ Light, version 0.75. INRIA, January 2002.
http://caml.inria.fr/.

[128] The Caml Development Team. Objective Caml, version 3.11.2. INRIA, January 2010.
http://caml.inria.fr/.

[129] The Coq Development Team. Cogq, version 8.2. INRIA, February 2009.
http://coq.inria.fr/.

[130] The E Development Team. E 1.2. Technische Universitat Miinchen, July 2010.
http://www4.informatik.tu-muenchen.de/~schulz/WORK/eprover.html.

[131] The EDEMOI Project, 2003. http://www-1sr.imag.fr/EDEMOI/.

[132] The Focal Development Team. Focal, version 0.3.1. CNAM, INRIA, and LIP6, May
2005. http://focal.inria.fr/.

[133] The Focalize Development Team. Focalize, version 0.6.0. CNAM, INRIA, and LIP6,
May 2010. http://focalize.inria.fr/.

[134] The FTA Project, 2000. http://www.cs.ru.nl/ " freek/fta/.

[135] The HOL Development Team. HOL 4, Kananaskis-6 release. Prosper Project and
SourceForge.net, September 2010. http://hol.sourceforge.net/.

[136] The Isabelle Development Team. /sabelle 2008. University of Cambridge and
Technische Universitat Miinchen, June 2008. http://isabelle.in.tum.de/.

[137] The LEGO Development Team. LEGO, version 1.3.1. University of Edinburgh,
November 1998. http://www.dcs.ed.ac.uk/home/lego/.

[138] The Maple Development Team. Maple 12. Waterloo Maple Inc., May 2008.
http://www.maplesoft.com/.

[139] The Mathematica Development Team. Mathematica 7. Wolfram Research, Inc.,
November 2008. http://www.wolfram.com/products/mathematica/.

[140] The Mizar Development Team. Mizar, version 7.10.01. University of Bialystok,
October 2008. http://www.mizar.org/.

[141] The NuPRL Development Team. NuPRL, version 5. Cornell University, March
2003. http://www.cs.cornell.edu/Info/Projects/NuPRL/.

[142] The Object Management Group. Object Constraint Language, version 2.0, May
2006. http://www.omg.org/.

[143] The Object Management Group. UML/XMI Schema, version 2.1, October 2007.
http://schema.omg.org/spec/UML/2.1.

173

http://axiom-developer.org/
http://www.calculemus.net/
http://caml.inria.fr/
http://caml.inria.fr/
http://coq.inria.fr/
http://www4.informatik.tu-muenchen.de/~schulz/WORK/eprover.html
http://www-lsr.imag.fr/EDEMOI/
http://focal.inria.fr/
http://focalize.inria.fr/
http://www.cs.ru.nl/~freek/fta/
http://hol.sourceforge.net/
http://isabelle.in.tum.de/
http://www.dcs.ed.ac.uk/home/lego/
http://www.maplesoft.com/
http://www.wolfram.com/products/mathematica/
http://www.mizar.org/
http://www.cs.cornell.edu/Info/Projects/NuPRL/
http://www.omg.org/
http://schema.omg.org/spec/UML/2.1

174

Bibliography

[144] The Object Management Group. Unified Modeling Language: Superstructure,
version 2.1.1, February 2007. http://www.omg.org/.

[145] The OpenMath Society. OpenMath Version 2.0, June 2007.
http://www.openmath.org/.

[146] The PVS Development Team. PVS, version 4.2. SRl and NASA, July 2008.
http://pvs.csl.sri.com/.

[147] The QEPCAD Development Team. QEPCAD, version B 1.54, April 2010.
http://www.usna.edu/Users/cs/qgepcad/.

[148] The Quotient Project, 2007. http://quotient.loria.fr/.
[149] The REVE Project, 2006. http://reve.futurs.inria.fr/.

[150] The SPASS Development Team. SPASS 3.7. Max-Planck-Institut Informatik, May
2010. http://www.spass-prover.org/.

[151] The Twelf Development Team. Twelf, version 1.5R1. University of Carnegie Mellon
and IT University of Copenhagen, March 2005. http://twelf.plparty.org/.

[152] Laurent Théry. Colouring Proofs: A Lightweight Approach to Adding Formal
Structure to Proofs. In User Interfaces for Theorem Provers (UITP), volume 103 of
ENTCS, pages 121-138, Amsterdam (The Netherlands), September 2003. Elsevier.

[153] Alberto Verdejo and Narciso Marti-Oliet. Executable Structural Operational
Semantics in Maude. Journal of Logic and Algebraic Programming, 67(1-2):226-293,
April 2006.

[154] Andrei Voronkov. Vampire. University of Manchester, August 2008.
http://www.voronkov.com/vampire.cgi.

[155] Markus Wenzel. Isar - A Generic Interpretative Approach to Readable Formal
Proof Documents. In Theorem Proving in Higher Order Logics (TPHOLs), volume
1690 of LNCS, pages 167-184, Nice (France), September 1999. Springer.

[156] Freek Wiedijk. Mizar Light for HOL Light. In Theorem Proving in Higher Order
Logics (TPHOLs), volume 2152 of LNCS, pages 378-394, Edinburgh (Scotland,
UK), September 2001. Springer.

[157] Freek Wiedijk. Formal Proof Sketches. In Types for Proofs and Programs (TYPES),
volume 3085 of LNCS, pages 378-393, Torino (Italy), April 2003. Springer.

[158] Vincent Zammit. On the Implementation of an Extensible Declarative Proof
Language. In Theorem Proving in Higher Order Logics (TPHOLs), volume 1690 of
LNCS, pages 185-202, Nice (France), September 1999. Springer.

http://www.omg.org/
http://www.openmath.org/
http://pvs.csl.sri.com/
http://www.usna.edu/Users/cs/qepcad/
http://quotient.loria.fr/
http://reve.futurs.inria.fr/
http://www.spass-prover.org/
http://twelf.plparty.org/
http://www.voronkov.com/vampire.cgi

	Title Page
	Acknowledgments
	Abstract
	Contents
	1 Introduction
	1.1 Formal Methods
	1.2 Theorem Proving
	1.3 Improving Theorem Proving
	1.4 Outline of the Document

	2 Structuring
	2.1 Certification of Airport Security Regulations
	2.1.1 The EDEMOI Project
	2.1.2 Results and Analyses
	2.1.3 Appropriateness of Focal

	2.2 Code Generation from Specifications
	2.2.1 Functional Extraction in Coq
	2.2.2 Mode Consistency Analysis
	2.2.3 Code Generation
	2.2.4 Extension to Focalize

	3 Automating
	3.1 Deduction and Computer Algebra
	3.1.1 A Maple Mode for Coq
	3.1.2 Proofs over Algebraically Closed Fields
	3.1.3 Tests over Real Closed Fields

	3.2 Certification of Automated Proofs
	3.2.1 Validation of Zenon Proofs
	3.2.2 Validation of B Proofs from Zenon

	4 Communicating
	4.1 From Focal Specifications to UML Models
	4.1.1 The Need for Documentation
	4.1.2 Profile and Transformation Rules
	4.1.3 Airport Security Regulations

	4.2 A Module-Based Model for Focal
	4.2.1 High-Level Compilation Schemes
	4.2.2 Module-Based Compilation

	5 Conclusion
	5.1 Achievements
	5.2 Perspectives

	A The Focal Environment
	A.1 What is Focal?
	A.2 Specification: Species
	A.3 Implementation: Collection
	A.4 Certification: Proving with Zenon
	A.5 Further Information

	B Former Contributions
	B.1 Information Retrieval in Proof Libraries
	B.1.1 Use of Type Isomorphisms
	B.1.2 Application to Proof Libraries

	B.2 A Proof Dedicated Meta-Language
	B.2.1 Evolution of Meta-Languages
	B.2.2 The Ltac Meta-Language
	B.2.3 Future of Meta-Languages

	B.3 Free-Style Theorem Proving
	B.3.1 The Several Proof Styles
	B.3.2 The Lpdt Proof Language
	B.3.3 The Next Proof Languages

	C Student Supervision
	C.1 PhD Students
	C.1.1 Jean-Frédéric Étienne (2004-2008)
	C.1.2 Pierre-Nicolas Tollitte (2009-now)
	C.1.3 Mélanie Jacquel (2010-now)

	C.2 Master and Engineering Students
	C.2.1 Yuan Gang (2003)
	C.2.2 Nicolas Bertaux (2008)
	C.2.3 Pierre-Nicolas Tollitte (2009)
	C.2.4 Sanaa Toumi (2009)
	C.2.5 Benjamin Lalière (2009)

	D Publication Addendum
	D.1 Paper 1: Airport Security Regulations in Focal
	D.2 Paper 2: Executing Inductive Relations
	D.3 Paper 3: A Maple Mode for Coq
	D.4 Paper 4: The Zenon Automated Theorem Prover
	D.5 Paper 5: From Focal to UML

	Bibliography

